The Grails Framework

Authors: The Grails Team

Version: 6.1.2

Table of Contents

1Introduction
1.1 What's new in Grails 6?
1.1.1 Updated Dependencies
2 Getting Started

2.11nstallation Requirements

2.2Downloading and Installing

2.3Creating an Application

2.4 Creating a Simple Web Application with Grails
2.5Using Interactive Mode

2.6 Getting Set Up in an IDE

2.7 Grails Directory Structure and Convention over Configuration
2.8 Running and Debugging an Application

2.9Testing an Application

2.10Deploying an Application

2.11 Supported Java EE Containers

2.12 Creating Artefacts

2.13Generating an Application
3Upgrading from the previous versions

3.1Upgrading from Grails 5 to Grails 6

3.2Upgrading from Grails 4 to Grails 5

3.3Upgrading from Grails 3.3.x to Grails 4

4 Configuration
4.1 Basic Configuration

4.1.10ptions for the YML format Config
4.1.2Built in options

4.1.3L.ogging
4.1.3.11 ogger Names
4.1.3.2Masking Request Parameters From Stacktrace L ogs

4.1.3.3External Configuration File
4.1.4GORM

4.1.5Configuring an HTTP proxy
4.2 The Application Class
4.2.1 Executing the Application Class
4.2.2 Customizing the Application Class
4.2.3The Application LifeCycle
4.3Environments
4.4The DataSource
4.4.1 DataSources and Environments

4.4.2 Automatic Database Migration
4.4.3 Transaction-aware DataSource Proxy

4.4.4Database Console

4.4.5Multiple Datasources
4.5Versioning

4.6 Dependency Resolution
5The Command Line

5.1Interactive Mode
5.2 Creating Custom Commands
5.3Creating a Grails Project

6 Object Relational Mapping (GORM

6.1 Quick Start Guide
6.1.1Basic CRUD

6.2 Further Reading on GORM
7The Web Layer
7.1 Controllers
7.1.1Understanding Controllers and Actions
7.1.2 Controllers and Scopes
7.1.3Modelsand Views
7.1.4Redirects and Chaining

7.1.5DataBinding

7.1.6 Responding with JSON
7.1.7More on JSONBuilder

7.1.8 Responding with XML
7.1.9Uploading Files

7.1.10 Command Objects

7.1.11 Handling Duplicate Form Submissions
7.1.12 Simple Type Converters

7.1.13Declarative Controller Exception Handling
7.2Groovy Server Pages
7.3URL Mappings
7.3.1 Mapping to Controllers and Actions
7.3.2Mapping to REST resources
7.3.3Redirects In URL Mappings
7.3.4Embedded Variables
7.3.5Mapping to Views

7.3.6 Mapping to Response Codes
7.3.7Mapping to HTTP methods

7.3.8Mapping Wildcards

7.3.9 Automatic Link Re-Writing
7.3.10Applying Constraints
7.3.11 Named URL Mappings

7.3.12 Customizing URL Formats
7.3.13Namespaced Contrallers
7.4CORS
7.5Interceptors
7.5.1 Defining Interceptors

7.5.2 Matching Requests with Interceptors
7.5.30rdering Interceptor Execution

7.6 Content Negotiation
8Traits
8.1 Traits Provided by Grails

8.1.1 WebAttributes Trait Example
9REST

9.1 Domain classes as REST resources

9.2Mapping to REST resources

9.3Linking to REST resources from GSP pages

9.4Versioning REST resources

9.5 Implementing REST controllers
9.5.1 Extending the Restful Controller super class
9.5.2Implementing REST Controllers Step by Step
9.5.3Generating a REST controller using scaffolding

9.6 Calling REST Services with HttpClient
9.7The REST Profile

9.8JSON Views
9.8.1 Getting Started
9.8.2 Creating JSON Views
9.8.3JSON View Templates
9.8.4 Rendering Domain Classes with JSON Views
9.8.5JSON Views by Convention
9.9 Customizing Response Rendering
9.9.1 Customizing the Default Renderers
9.9.2 Implementing a Custom Renderer
9.9.3Using GSP to Customize Rendering
9.10Hypermedia as the Engine of Application State
9.10.1HAL Support

9.10.2 Atom Support
9.10.3Vnd.Error Support

9.11 Customizing Binding of Resources
9.12RSS and Atom
10 Asynchronous Programming
11Validation
11.1 Declaring Constraints
11.2Validating Constraints

11.3 Sharing Constraints Between Classes
11.4Vadidation on the Client

11.5Validation and Internationalization
11.6 Applying Validation to Other Classes
12 The Service Layer
12.1 Declarative Transactions
12.1.1 Transactions and Multi-DataSources
12.1.2 Transactions Rollback and the Session

12.2 Scoped Services

12.3 Dependency Injection and Services
13 Static Type Checking And Compilation

13.1 The GrailsCompileStatic Annotation

13.2 The GrailsTypeChecked Annotation

14 Testing
14.1 Unit Testing

14.2 Integration Testing
14.3Functional Testing
15Internationalization

15.1 Understanding M essage Bundles
15.2 Changing L ocales

15.3Reading M essages

15.4 Scaffolding and i18n

16 Security
16.1 Securing Against Attacks

16.2Cross Site Scripting (XSS) Prevention
16.3 Encoding and Decoding Objects
16.4 A uthentication
16.5 Security Plugins
16.5.1 Spring Security
17Plugins
17.1 Creating and Installing Plugins

17.2 Plugin Repositories
17.3Providing Basic Artefacts

17.4Evauating Conventions
17.5Hooking into Runtime Configuration
17.6 Adding Methods at Compile Time
17.7 Adding Dynamic Methods at Runtime
17.8Participating in Auto Reload Events
17.9Understanding Plugin L oad Order
17.10The Artefact AP
17.10.1 Asking About Available Artefacts
17.10.2 Adding Y our Own Artefact Types

18 Grails and Spring
18.1 Configuring Additional Beans

18.2 Runtime Spring with the Beans DSL
18.3The BeanBuilder DSL Explained
18.4 Property Placeholder Configuration
18.5Property Override Configuration
18.6 Spring Boot Actuators

19 Scaffolding

20 Deployment
20.1 Standalone

20.2 Container Deployment (e.g. Tomcat
20.3Deployment Configuration Tasks

21 Contributing to Grails
21.1 Report Issuesin Github's issue tracker
21.2Build From Source and Run Tests
21.3 Submit Patches to Grails Core
21.4 Submit Patches to Grails Documentation

1 Introduction

Many modern web frameworks in the Java space are more complicated than needed and
don’t embrace the Don’t Repeat Y ourself (DRY') principles.

Dynamic frameworks like Rails and Django helped pave the way to a more modern way of
thinking about web applications. Grails builds on these concepts and dramatically reduces
the complexity of building web applications on the Java platform. What makes it different,

however, isthat it does so by building on aready established Java technologies like Spring
and Hibernate.

Grailsisafull stack framework and attempts to solve as many pieces of the web
development puzzle through the core technology and its associated plugins. Included out the
box are things like:

® GORM - An easy to use Object Mapping library with support for SQL, MongoDB, Neo4j
and more.

® View technologiesfor rendering HTML aswell as JSON

® A controller layer built on Spring Boot

® A plugin system featuring hundreds of plugins.

® Flexible profilesto create applications with AngularJS, React and more.

® Aninteractive command line environment and build system based on Gradle
* Anembedded Tomcat container which is configured for on the fly reloading

All of these are made easy to use through the power of the Groovy language and the
extensive use of Domain Specific Languages (DSLs)

This documentation will take you through getting started with Grails and building web
applications with the Grails framework.

In addition to this documentation there are comprehensive guides that walk you through
various aspects of the technology.

Finaly, Grailsis far more than just a web framework and is made up of various
sub-projects. The following table summarizes some other key projects in the eco-system
with links to documentation.

Table 1. Gra
Project Description

An Object Mapping implementation for SQL

GORM for Hibernate databases

An Object Mapping implementation for the

GORM far MongoDB MongoDB Document Database

An Object Mapping implementation for

GORM for Neo4j Neodj Graph Database

A View technology for rendering JSON on

JSON Views the server side

A View technology for rendering HTML and

Gloavy Servar Pages other markup on the server

http://gorm.grails.org
http://gorm.grails.org/latest/hibernate
http://gorm.grails.org/latest/mongodb
http://gorm.grails.org/latest/neo4j
http://gorm.grails.org
https://gsp.grails.org
http://views.grails.org
http://www.spring.io
http://plugins.grails.org
http://start.grails.org/#/index
http://gradle.org
http://tomcat.apache.org
http://groovy-lang.org
http://guides.grails.org
http://gorm.grails.org/latest/hibernate
http://gorm.grails.org/latest/mongodb
http://gorm.grails.org/latest/neo4j
http://views.grails.org
http://gsp.grails.org

Asynchronous programming abstraction with

Async Framework support for RxJava, GPars and more

1.1 What'snew in Grails 6?

This section covers all the new features introduced in Grails 6

Overview

Grails framework 6 updates Spring Boot to version 2.7. We recommend checking the
following Spring technol ogies release notes for more information.

® Spring Boot 2.7

The minimum Java version required to run Grails 6 has been updated to Java 11.

Support for Micronaut Environmentsin appiication. yni
The support has been introduced for Micronaut’s Environments concept within the
application.ym file. Thisfeature allows developers to define environment-specific

configurations seamlessly, aiding in smoother transitions between different operational
environments like development, testing, and production.

1.1.1 Updated Dependencies
Grails 6.1.2 ships with the following dependency upgrades:
¢ Groovy 3.0.11
® Micronaut 3
® Micronaut for Spring 4
* GORM 8
® Spring Framework 5.3
® Spring Boot 2.7
* Gradle7.6.1
® Spock 2.1-groovy-3.0

® Grails Testing Support 3

2 Getting Started

2.1 Installation Requirements

http://async.grails.org
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.7-Release-Notes

Beforeinstalling Grails you will need a Java Development Kit (JDK) installed with the
minimum version denoted in the table below. Download the appropriate JDK for your
operating system, run the installer, and then set up an environment variable called sava_Hove
pointing to the location of thisinstallation.

Grailsversion JDK version (minimum)
6 11
5 8

To automate the installation of Grails we recommend SDKMAN which greatly ssmplifies
installing and managing multiple Grails versions.

On some platforms (for example macOS) the Java installation is automatically detected.
However in many cases you will want to manually configure the location of Java. For
example, if you're using bash or another variant of the Bourne Shell:

export JAVA HOME=/ Li brary/ Java/ Home
export PATH="$PATH: $JAVA HOVE/ bi n"

On Windows you would have to configure these environment variablesin v

Conput er / Advanced/ Envi ronment Vari abl es

2.2 Downloading and Installing

The first step to getting up and running with Grailsisto install the distribution.

The best way to install Grails on *nix systemsiswith SDKMAN which greatly simplifies
installing and managing multiple Grails versions.

Install with SDKMAN

Toinstall the latest version of Grails using SDKMAN, run this on your terminal:

sdk install grails

Y ou can aso specify aversion

sdk install grails 6.1.2

Y ou can find more information about SDKMAN usage on the SDKMAN Docs

M anual installation

For manual installation follow these steps:

* Download abinary distribution of Grails and extract the resulting zip file to alocation of
your choice

® Set the GRAILS HOME environment variable to the location where you extracted the zip

Unix/Linux

http://sdkman.io
https://sdkman.io
https://sdkman.io/usage
https://github.com/grails/grails-core/releases

®* Thisistypically amatter of adding something like the following export
GRAI LS_HOME=/ pat h/ t o/ grai I s tO your profile

® Thiscan be done by adding export PATH="$PATH: $GRAI LS_HOMVE/ bi n* tO your profile
Windows

® Copy the path to the bin directory inside the grails folder you have downloaded, for
example,

C:./path_to_grails/bin

® Goto Environment Variables, you can typically search or run the command below, the type
env and then Enter

Start + R
® Edit the Path variable on User Variables/ System Variables depending on your choice.
® Paste the copied path in the Path Variable.

If Grailsisworking correctly you should now be ableto type graiis --version in the termina
window and see output similar to this:

Gails Version: 6.1.2

2.3 Creating an Application

To create a Grails application you first need to familiarize yourself with the usage of the
grai 1's command which is used in the following manner:

grail s <<command nane>>

Run create-app to create an application:

grails create-app nyapp

Thiswill create anew directory inside the current one that contains the project. Navigate to
this directory in your console:

cd nyapp

2.4 Creating a Simple Web Application with Grails

Step 1. Create a New Project
Open your command prompt or terminal.

Navigate to the directory where you want to create your Grails project:
$ cd your_project_directory
Create anew Grails project with the following command:

$ grails create-app nyapp --servlet=tontat

Using the - -servi et Option with the value "tomcat" specifies that the Grails application

should be configured to use an embedded Tomcat servlet container asits runtime
environment, allowing you to run the application as a standal one executable during
development and testing.

Step 2: Accessthe Project Directory

Change into the "myapp" directory, which you just created:
$ cd nyapp

Step 3: Start GrailsInteractive Console

Start the Grails interactive console by running the "grails* command:

$ grails
Step 4. Createa Controller

In the Grails interactive console, you can use auto-completion to create a controller. Type
the following command to create a controller named "greeting":

grails> create-controller greeting

This command will generate a new controller named " GreetingController.groovy" within the
grails-app/controllers/myapp directory. Y ou might wonder why there is an additional
"myapp" directory. This structure aligns with conventions commonly used in Java
development, where classes are organized into packages. Grails automatically includes the
application name as part of the package structure. If you do not specify a package, Grails
defaults to using the application name.

For more detailed information on creating controllers, you can refer to the documentation on
the create-controller page.

Step 5: Edit the Controller

Open the "GreetingController.groovy"” file located in the "grail s-app/controllers/myapp"
directory in atext editor.

Add the following code to the "GreetingController.groovy" file:

package nyapp
class GeetingController {

def index() {
render "Hello, Congratulations for your first Gails application!"
}

}

The action is simply amethod. In this particular case, it calls a special method provided by
Grailsto render the page.

Step 6: Run the Application

Grails framework now relies on Gradle tasks for running the application. To start the
application, use the following Gradle boot Run cOMmand:

$./gradl ew boot Run

Y our application will be hosted on port 8080 by default. Y ou can access it in your web
browser at:

http://|ocal host:8080/

Now, it'simportant to know that the welcome page is determined by the following URL
mapping:

class Url Mappi ngs {
static mappings = {
"/ $controller/$action?/$id?(.$format) ?"{
constraints {
/1 apply constraints here

}

"/"(view "/index")
"500"(view '/error')
" 404" (vi ew '/ not Found")
}
}

This mapping specifies that the root URL ("/") should display the "index.gsp" view, which is
located at "grails-app/views/index.gsp." This "index.gsp” file serves as your welcome or
landing page. The other entriesin the mapping handle error pages for HTTP status codes
500 and 404.

GrailsURL Convention Based on Controller and Action Name

Grailsfollows a URL convention that relies on the names of controllers and their actions.
This convention simplifies the creation and access of various pages or functionalities within
your web application.

In the provided code example:

package nyapp
class GeetingController {
def index() {
render "Hello, Congratulations for your first Gails application!"

}
}

® Theaeetingcontroller Class represents acontroller in Grails.

® |nsidethe controller, there' s an i ndex action defined as a method. In Grails, actions are
essentially methods within a controller that handle specific tasks or respond to user requests.

Now, let’s understand how the Grails URL convention works based on this controller and
action:

1. Controller Namein URL:

1. The controller name, in this case, "GreetingController,” is used in the URL. However, the
convention capitalizes the first letter of the controller name and removes the "Controller”
suffix. So, "GreetingController" becomes "greeting" in the URL.

2. Action Namein URL:

1. By default, if you don’'t specify an action in the URL, Grails assumes the "index" action. So,
in this example, access ng the URL /greeting

See the end of the controllers and actions section of the user guide to find out more on
default actions.

Optional: Set a Context Path

http://localhost:8080/

If you want to set a context path for your application, create a configuration property in the
"grails-app/conf/application.yml” file:

server:
servlet:
cont ext - path: /nyapp

With this configuration, the application will be available at:

http://local host:8080/myapp/

Alternatively, you can set the context path from the command line when using Gradle to run
a Grails application. Here' s how you can do it:

./ gradl ew boot Run -Dgrails.server.servlet.context-path=/your-context-path

Replace /your - cont ext - pat h With the desired context path for your Grails application. This
command sets the context path di rectly viathe - pgrai I s. server. servl et. cont ext - pat h system

property.

For example, if you want your application to be available at "http://localhost:8080/myapp,”
you can use the following command:

./ gradl ew boot Run -Dgrails.server.servlet.context-path=/nyapp

This allows you to configure the context path without modifying the application’s
configuration files, making it a flexible and convenient option when running your Grails
application with Gradle.

Optional: Change Server Port

If port 8080 is already in use, you can start the server on a different port using the
grails.server.port SyStem-property:

$./gradl ew boot Run --Dgrails.server.port=9090
Replace "9090" with your preferred port.
Note for Windows Users

If you encounter an error related to the Java process or filename length, you can use the
--stacktrace flag or add grails { pathingldar = true } 1O your "build.gradle" file.

Conclusion

Y our Grails application will now display a"Hello, Congratulations on your first Grails
application!" message when you accessit in your web browser.

Remember, you can create multiple controllers and actions to build more complex web

applications with Grails. Each action corresponds to a different page accessible through
unique URL s based on the controller and action names.

2.5 Using I nteractive Mode

The Grails Command-line Interface (CLI) offers an interactive mode, which you can access
by entering "grails’ in your Terminal application or Linux Command Line.

Once you're in the command-line interface, you can enhance your efficiency by utilizing the

http://localhost:8080/myapp/

TAB key for auto-completion. For instance:

grails> create

create-app create-plugin creat e- webapp
create-controller create-restapi

creat e-domai n-cl ass creat e- web- pl ugin

This interactive mode provides a convenient way to explore available Grails commands and
options, making your Grails development workflow more efficient and user-friendly.

For more information on the capabilities of interactive mode, refer to the section on
Interactive Mode in the user guide.

2.6 Getting Set Up in an IDE

Because Grailsis built upon the Spring Framework (Sprint Boot), the Gradle build tool, and
the Groovy programming language, it is possible to develop Grails application using most
popular VM Integrated Devel opment Environments (IDEs). Some IDEs offer more
specialized support for Grails, while others may offer basic support for managing
dependencies/plugins, running Gradle tasks, code-completion and syntax highlighting.

1. IntelliJ IDEA

IntelliJ IDEA isawidely used IDE for Grails development. It offers comprehensive support
for Groovy and Grails, including features like code-completion, intelligent code analysis,
and seamless integration with Grails artefacts.

IntelliJ IDEA also provides powerful database tools that work with Grails GORM (Grails
Object Relational Mapping) seamlesdly. It offers both a Community (free) and Ultimate
(paid) edition, with the latter offering more advanced Grails support, including an embedded
version of the Grails Forge, and view resolution for both GSPs and JSON views.

IntelliJ IDEA Website

2. Visual Studio Code (VS Code)

Visual Studio Codeis alightweight, open-source code editor developed by Microsoft. While
it'snot afull-fledged IDE, it offers powerful extensions for Grails and Groovy devel opment.
You can install extensions like code-groovy and [Grails for V SCode to enhance your Grails
developer experience.

V'S Code provides features such as syntax highlighting, code navigation, and integrated
terminal support. It's agreat choice for developers who prefer alightweight and
customi zable devel opment environment.

Visua Studio Code (VS Code)
3. STS(Spring Tool Suite)

The Spring Tool Suite (STS) is set of IDE tools designed for Spring Framework
development, with versions based on both V SCode and Eclipse. This section focuses on the
Eclipse version, V SCode users can refer to the preceding discussion.

STS can work as an effective Grails developer platform when used with the Groovy
Development Tools plugin (which can be installed using the Eclipse Marketplace). STS

https://spring.io
https://gradle.org/
https://groovy-lang.org
https://start.grails.org
https://www.jetbrains.com/idea/
https://marketplace.visualstudio.com/items?itemName=marlon407.code-groovy
https://marketplace.visualstudio.com/items?itemName=GDOTecnologia.gfvscode
https://code.visualstudio.com/
https://spring.io/tools
https://marketplace.eclipse.org/content/groovy-development-tools
https://marketplace.eclipse.org/content/groovy-development-tools

does not offer specific support for Grails artefacts or GSP views.

Spring Tool Suite (STS)
4. Netbeans

Apache Netbeans does not offer specific support for Grails, but it will import Grails
applications as Gradle projects and provides reasonabl e editing support for Groovy and GSP
views.

5. TextMate, VIM, and More

There are several excellent text editors that work nicely with Groovy and Grails. Here are
some references:

® A bundleisavailable for Groovy / Grails support in Textmate.

® A plugin can be installed via Sublime Package Control for the Sublime Text Editor.

® The emacs-grails extension offers basic support for Grails development in Emacs.

® Seethis post for some helpful tips on how to set up VIM asyour Grails editor of choice.
These text editors, along with the provided extensions and configurations, can enhance your

Groovy and Grails development experience, offering flexibility and customization to meet
your coding preferences.

2.7 Grails Directory Structure and Convention over
Configuration

Grails adopts the "convention over configuration” approach to configure itself. In this
approach, the name and location of files are used instead of explicit configuration.
Therefore, it’'s essential to become familiar with the directory structure provided by Grails.
Here' s a breakdown of the key directories and links to relevant sections:

1. grails-app - TOp-Level Directory for Groovy Sources

1. conf - Configuration Sources
2. control lers - Web Controllers - Responsible for the"C" in MV C (Mode-View-Controller).

3. domain - Application Domain - Representsthe"M" in MV C.

4. i18n - Supports Internationalization (i18n).

5. services - The Service Layer.

6. taglib - Tag Libraries.

7. utits - Houses Grails-specific utilities.

8. views - Groovy Server Pages (GSP) or JSON Views - Responsible for the"V" in MV C.

9. commands - Custom Grails Commands - Create your own Grails CL1 commands.

https://spring.io/tools/sts
https://netbeans.apache.org
https://github.com/textmate/groovy-grails.tmbundle
http://macromates.com
https://packagecontrol.io/packages/Grails
http://www.sublimetext.com
https://github.com/lifeisfoo/emacs-grails
http://www.objectpartners.com/2012/02/21/using-vim-as-your-grails-ide-part-1-navigating-your-project/
http://views.grails.org/latest

2. src/main/ groovy - Supporti ng Sources

3. src/test/groovy - Unit and Integration Tests

4. src/integration-tests/ groovy - INntegration Tests - For testing Grails applications at the
integration level.

Understanding this directory structure and its conventions is fundamental to efficient Grails
devel opment.

2.8 Running and Debugging an Application

Grails applications can be executed using the built-in Tomcat server using the boot Run
command. By default, it launches a server on port 8080:

./ gradl ew boot Run

To specify adifferent port, you can set the system property -pgrai i s. server. port asfollows:

./ gradl ew boot Run -Dgrails.server. port=8081

For debugging a Grails app, you have two options. Y ou can either right-click on the
Appl i cati on. groovy Classin your IDE and select the appropriate debugging action, or you can
run the app with the following command and then connect a remote debugger to it:

./ gradl ew boot Run --debug-jvm

For more information on the boot Run cOmmand, please refer to the Grails reference guide.

2.9 Testing an Application

Grails offers a convenient feature where you can automatically generate unit and integration
tests for your application using the creat e-* commands. These generated tests are stored in
thesrcitests gr oovy and src/int egration-tests/groovy directory. However, it isyour
responsibility to popul ate these tests with the appropriate test logic. Y ou can find
comprehensive guidance on crafting valid test logic in the section dedicated to [Unit and
Integration Tests|(link:testing.html).

To initiate the execution of your tests, including both unit and integration tests, you can
utilize the Gradle check task. Follow these steps:

1. Open your terminal or command prompt and navigate to your Grails project’ s root directory.

2. Execute the following Gradle command:

./ gradl ew check

By running the check task, you ensure that all testsin your Grails project, including the ones
you'’ ve created and popul ated with test logic, are executed. This comprehensive testing
approach contributes significantly to the robustness and overall quality of your application.

. Viewing Test Reports: After running your tests, Grails generates test reports that provide
valuable insightsinto the test results. Y ou can typically find these reportsin the

bui I d/ reports/tests directory of your Grails project. Open these reportsin aweb browser to
view detailed information about test outcomes, including passed, failed, and skipped tests.

Remember, testing is not just a process; it’s afundamental practice that enhances your
Grails application’ s reliability. Viewing test reports helps you analyze and understand the
test results, making it easier to identify and address any issues.

By following these testing practices and reviewing test reports, you can deliver a
high-quality Grails application to your users with confidence.

2.10 Deploying an Application
Grails applications offer multiple deployment options.

For traditional container deployments, such as Tomcat or Jetty, you can generate a Web Application Archiv

./ gradl ew war

Thistask generates aWAR file within the bui 1 a/1i bs directory, ready for deployment
according to your container’s guidelines.

It s worth noting that Grails includes an embedded version of Tomcat within the WAR file
by default. This could pose compatibility issuesif you intend to deploy to a different Tomcat
version. To exclude the embedded container, you can adjust the Tomcat dependenciesin
YOUr bui | d. gradi e file:

i mpl ement ati on "org. springframework. boot : spring-boot-starter-tontat”

Recommended: For Grails 6 applications, it is advisable to use Tomcat 9 for compatibility
and performance enhancements. Ensure that you refer to the Tomcat version table for
compatibility details.

By default, the war task runsin the producti on €nvironment. Y ou can specify a different
environment, such as devel oprent , by overriding it in the Gradle command:

./gradl ew -Pgrails.env=dev war

If you prefer not to use a separate Servlet container, you can run the Grails WAR fileasa
regular Java application:

./ gradl ew war
java -Dgrails.env=prod -jar build/libs/nywar-0.1.war

When deploying Grails, ensure that your container’s VM runs with the -server option and
sufficient memory alocation. Here are recommended VM flags:

-server -Xmx1024M

2.11 Supported Java EE Containers

The Grails framework requires that runtime containers support Servlet 3.0 and above. By
default, Grails framework applications are bundled with an embeddable Tomcat. For more
information, please see the "Deployment” section of this documentation.

In addition, reference the Grails Guides for tips on how to deploy Grails to various popul ar
Cloud services.

http://tomcat.apache.org/whichversion.html
https://guides.grails.org/

2.12 Creating Artefacts

Grails provides a set of useful CLI commands for various tasks, including the creation of
essential artifacts such as controllers and domain classes. These commands simplify the
development process, although you can achieve similar results using your preferred
Integrated Devel opment Environment (IDE) or text editor.

For instance, to create the foundation of an application, you typically need to generate a
domain model using Grails Commands:

grails create-app nyapp
cd nyapp
grails create-donain-class book

Executing these commands will result in the creation of a domain class located at
grai | s- app/ domai n/ nyapp/ Book. gr oovy, @S Shown in the followi ng code:

package nyapp

cl ass Book {

The Grails CLI offers numerous other commands that you can explore in the Grails
command line reference guide.

Using interactive mode enhances the development experience by providing auto-complete
and making the process smoother.

2.13 Generating an Application

Quick Start with Grails Scaffolding

To quickly initiate your Grails project, you can employ the "runCommand” Gradle task.
Thistask alows you to generate the essential structure of an application swiftly.
Specifically, when running the following Bash command, you can create a controller
(including its unit test) and the associated views for your application:

./ gradl ew runConmand - Pargs="generate-all mnyapp. Book"

3 Upgrading from the previous versions

3.1 Upgrading from Grails5to Grails6

Upgrade Instructionsfor Grailsand Related Dependencies

To ensure compatibility with Grails 6, you must update the following versionsin your
project:

1. Java 11 as Basdline:

Starting from Grails 6, Java 11 serves as the baseline requirement for the framework. When
upgrading to Grails 6, ensure that your project is configured to use Java 11. This
compatibility with Java 11 allows you to take advantage of the |latest features, security
enhancements, and performance improvements provided by Java 11.

Please make sure to update your project’s Javaversion to 11 before proceeding with the

Grails 6 upgrade. Doing so will ensure a seamless transition to the latest version of Grails
and enable you to enjoy all the benefits that Java 11 has to offer.

2. TheNew GrailsCLI:

Grails 6 comes with a completely revamped and highly efficient Command Line Interface
(CLI) that enables you to generate applications and plugins at a remarkable speed. For
instance, you can now use the new CLI to create a new Grails 6 application with the
following command:

grails create-app ny-app

The new CLI also allows you to generate plugins easily. For example, to create anew plugin
named "my-plugin,” you can use the following command:

grails create-plugin nmy-plugin

One notable improvement in Grails 6 isthat it no longer supports certain commands that
performed redundant tasks, such as the outdated grai i s run-app COmMmand. Instead, it
recommends using the Gradl e boot run task for running your application, which offers better
performance and functionality.

For example, to run your Grails 6 application, you can use the following command:

./ gradl ew boot Run

Asaresult of these improvements, the new CL I provides a more streamlined and efficient
way to work with Grails applications and plugins.

Additionally, in order to fully embrace the improvementsin Grails 6, it is advised to remove
the old Grails wrapper files./graiiswand ./ grai s from your project root folder. This ensures
that you solely rely on the enhanced capabilities of the new CLI.

Overadl, Grails 6 offers a significantly improved development experience with its new CLI,
optimized commands, and advanced features for generating applications and plugins.

3. Setting Grails Version and Grails Gradle Plugin:

To upgrade to Grails 6, it's important to configure the appropriate versionsin the
gradl e. properties file as shown below:

gradle.properties

grail sVersion=6.0.0
grai |l sG adl ePl ugi nVersi on=6. 0.0

By specifying the above versions, you' |l gain access to the latest features, improvements,
and bug fixes introduced in Grails 6. Upgrading to this version empowers your application
with enhanced performance and improved security. Additionally, it allows you to leverage
the latest advancementsin the Grails framework for a more efficient and secure

devel opment experience.

4. GORM Version:

If your project utilizes GORM, ensure to update the version in the gradi e. properties file as
demonstrated below:

gradle.properties

gor nVer si on=8.0.0

By upgrading to GORM 8.0.0, you will benefit from essential updates and optimizations.
This upgrade guarantees seamless interactions with your database and enhances your data
management experience. Staying current with GORM allows you to take advantage of the
latest database features and improvements, thereby optimizing the performance and
functionality of your application.

5. GradleVersion:

Grails 6 uses Gradle 7.6.2 which offers performance improvements, bug fixes, and new
features over previous versions. Upgrading to the latest Gradle version helps accelerate your
build processes and ensures compatibility with other dependencies.

5.1. Upgradeto Gradle 7.6.2

Run the following command to update the Gradle wrapper to the desired version (e.g.,
Gradle 7.6.2):

./ gradl ew wr apper --gradle-version 7.6.2

This command will download the specified Gradle version and update the Gradle wrapper
settings in your project.

5.2. Check Gradle Version:

After the command finishes, you can verify that the Gradle version has been updated by
checki ng the gradl e-wr apper . properties file located in the gradl e/ wr apper di rectory. The
di stributionurl N the file should now point to the Gradle 7.6.2 distribution:

distributionUl=https\://services.gradle.org/distributions/gradle-7.6.2-bin.zip

5.3. Build the Project:

After updating the Gradle wrapper, you can now build your Grails project using the updated
Gradle version:

./gradl ew build
Thiswill initiate the build process with the new Gradle version.
6. Embracing Modern Plugin M anagement with Grails 6

In Gradle, there are two main ways to add plugins to your project: the pi ugi ns block and the
apply plugi n Statement.

Grails 6 introduces a significant change in how plugins are managed by adopting the Gradle
pl ugi ns block instead of the traditional appiy pl ugi n Statements. This shift streamlines the
project’s build configuration and brings it more in line with modern Gradle conventions.
New Grails projects will now utilize the pi ugi ns block to manage plugin dependencies and
configurations.

Using the piugi ns Block in Grails 6:

With the new approach, adding pluginsto a Grails 6 project is more explicit and organized.
[N your bui 1 d. gradi e file, you can declare plugins within the pi ugi ns block, specifying the
plugin’s D and version.

Here' s an example of adding the vi ews-j son plugin using the pi ugi ns block:

build.gradle

pl ugi ns {
id'"org.grails.plugins.views-json' version '3.0.0
}

Managing Multiple Plugins:

The pi ugi ns block allows you to add multiple plugins, each on its own line. This enhances
clarity and makes it easier to manage plugin dependencies.

build.gradle

pl ugi ns {
id 'org.grails.plugins.views-json'" version '3.0.0
/1 Add other plugins as needed

}

Moving Older Applicationsto the New Approach:

If you are migrating an older Grails application to Grails 6, you can update the plugin
declarations from appl y pi ugi n t0 the pi ugi ns block. For example, if your previous application
used the vi ews-j son plugin, you can modify the build.gradle as follows:

Before (USI Ng apply pl ugi n):

build.gradle

apply plugin: 'org.grails.plugins.views-json
After (Using pi ugi ns Block in Grails 6):

build.gradle

pl ugi ns {
id'"org.grails.plugins.views-json' version '3.0.0
}

By migrating to the pi ugi ns block, your Grails 6 project will adhere to modern Gradle
conventions, making it easier to manage plugin dependencies and configurations. This new
approach maintains consistency and enhances the overall structure of the project, ensuring a
smoother and more efficient development process.

6.2. Use the pluginM anagement Block

Movi ng from apply plugin inthebuild. gradl e fileto the pl ugi nManagenent block in the
settings. gradl e fileisasignificant change introduced in Grails 6. This change is part of
Grails effort to adopt the Gradle pi ugi nvanagement @pproach for better plugin version control
and consistency across projects.

In the previous versions of Grails (before Grails 6), developers used to apply plugins
directly in thebui i d. gradi e file using the appi y pl ugi n Syntax. For example:

build.gradle

buil dscript {
repositories {
maven { url "https://plugins.gradle.org/nm2/" }
maven { url "https://repo.grails.org/grails/core" }

dependenci es {
classpath "org.grails:grails-gradl e-plugin: $grail sG adl ePl ugi nVer si on"
classpath "org.grails. plugins: hi bernate5:7.3.0"
cl asspath "org.grails. plugins:views-gradle:2.3.2"

}

version "0.1"

group "hell orestapi”

apply plugin:"eclipse"

apply plugin:"idea"

apply plugin:"war"

apply plugin:"org.grails.grails-web"

apply plugin:"org.grails.plugins.views-json"

However, with Grails 6, the recommended practice is to move plugin declarations to the
pl ugi nvanagerent DIOCK iN the settings. gradi e file. The pi ugi nvanagenent block acts as a central
place to manage plugin versions for all projects within a multi-project build.

Configuring Pluginsin the pluginM anagement Block:

Here’' s how you can declare the vi ews-j son plugin in the pi ugi nManagerent block:
1. Openthesettings. gradie filein your Grails 6 project.
2. Add the pi ugi nvanagenent block with the vi ews-j son plugin declaration:

settings.gradle

pl ugi nManagenent {
repositories {
/1 Add the Grails plugin repository to resolve the views-json plugin
maven { url "https://repo.grails.org/grails/core" }
/1 Other repositories can be added here if needed

}

/| Declare the views-json plugin and its version
pl ugi ns {
id 'org.grails.plugins.views-json' version '3.0.0
/1 QG her plugins can be decl ared here
}
}

By including the vi ews-j son plugin in the pi ugi nvanagenent block, Grails 6 will ensure that all
projects within the multi-project build use the specified version of the vi ews-j son plugin. This
promotes consistency in JSON rendering across different projects and simplifies
maintenance and version control.

Moving Older Applicationsto the New Approach:

If you are migrating an older Grails application to Grails 6, you can update the plugin
declarations from appi y pi ugi n t0 the pi ugi ns block in the bui 1 d. gradi e file, as shown in the
previous section.

By adopting the pi ugi nmanagerent block and declaring the vi ews-j son plugin in the

settings. gradl e file, you ensure consistent usage of the plugin across al projectsin the Grails
6 ecosystem. This approach simplifies plugin version control and improves the overall
development experience when working with JSON responses in your Grails applications.

6.3 Grails Adoption of " buildSrc* Folder for Buildscript Dependencies

In previous versions of Grails (before Grails 6), managing buildscript dependencies, such as
the vi ews- gradi e plugin, was typically done directly in the main bui i d. gradi e file. This enables
Gradle compilation of JSON views for production environment. Developers would define
the repositories and dependencies needed for the buildscript within the bui 1 dscript block:

build.gradle

bui I dscript {
repositories {
mavenCentral ()

dependenci es {
/'l Exanple: views-gradle plugin
cl asspath "org.grails. plugins:views-gradle:3.0.0"

}
}

/1 Apply the views-json plugin
apply plugin: 'views-json

/1 O her configurations and dependenci es

This approach meant that the buildscript dependencies were mixed with the rest of the
project’ s configurations, making the oui 1 d. gradi e file longer and potentially harder to
maintain. As aresult, the buildscript section might become cluttered with various plugin
dependencies and other build logic.

With the introduction of Grails 6, there is a significant improvement in managing buildscript
dependencies through the use of the vui 1 asrc folder. This dedicated folder provides a more
organized approach to handle buildscript dependencies, custom Gradle plugins, and
extensions specific to the project.

Benefits of Grails 6 Adoption of " buildSrc" Folder

1. Modular Build Configuration: Theuii dsrc folder acts as a separate mini-project within
your Grails application, allowing you to encapsulate build logic, plugins, and dependencies.
This separation of concerns improves the organization and modularity of the build
configuration.

2. Streamlined Buildscript Management: By moving buildscript dependenciesto bui i dsrc,
you can keep the main bui 1 d. gradi e file clean and focused on the application’ s specific
requirements. This reduces clutter and promotes a more concise and clear build script.

3. Better Collaboration: The i1 dsrc approach simplifies collaboration within development
teams. Build logic can be centralized and shared across projects, enabling a consistent and
efficient development workflow.

Updatefrom Grails5

The new Grails 6 application USes bui I dsrc/ bui I d. gradi e. The buildSrc directory can host a
build script if additional configuration is needed (e.g. to apply plugins or to declare
dependencies). Thewui 1 asrc folder in a Grails project follows a specific tree layout, which
includes the bui 1 d. gradi e file. Here' s how the tree layout looks like:

bui I dSrc/
buil d. gradl e
src/
mai n/
groovy/

Let’swalk through how to manage the vi ews- gradi e plugin using the bui i dsrc folder in
Grails6:

Step 1: Create buildSrc Folder:
In the root directory of your Grails 6 project, create a new folder named bui 1 dsrc.
Step 2: Add buildSrc Script:

Inside the vbui 1 dsr ¢ folder, create a build.gradle file and specify the vi ews- gradi e plugin
dependency:

buildSrc/build.gradle

repositories {
mavenCentral ()
}

dependenci es {
impl ementation "org.grails.plugins:views-gradle: 3.0.0"

}
Step 3: Remove apply plugin Statement:

In the main bui 1 4. gradl e fiIe, remove the vui 1 dscri pt block and the apply plugi n Statement
related to vi ews- gradi e, aSit is now managed in the vui 1 dsrc folder:

build.gradle

buil dscript {
repositories {
mavenCentral ()
}

dependenci es {
classpath "org.grails. plugins:views-gradl e:3.0.0"
}
}

/1 No need to apply views-json plugin here
/'l Remove the apply plugin statement for views-json if it was previously present
apply plugin: 'views-json'

/1 ... Qher configurations and dependencies

By using the vui 1 asr ¢ folder, developers can separate buildscript dependencies and custom
plugin configurations from the main bui 1 d. gradi e file. Thisleadsto a cleaner and more
concise build script, which is easier to maintain and understand. Additionally, the bui 1 dsrc
approach encourages modularity, as build logic and custom plugins can be centralized and
shared across projects, fostering better collaboration and consistency within development
teams.

7. GORM for MongoDB Sync Driver:
The GORM for MongoDB is updated to support the latest mongodb-driver-sync. If you are

using GORM for MongoDB and making use of specific MongoDB Driver or low-level
Mongo API features, consider checking the Upgrading to the 4.0 Driver guide.

This update ensures seamless integration with MongoDB, access to new features, and
improved performance while interacting with your MongoDB database.

8. Asset Pipeline Plugin:

In Grails 6, there is an update to the Asset Pipeline Plugin, which is now version 4.3.0. The
Asset Pipeline Plugin isacrucial component in Grails applications, responsible for
managing frontend assets like stylesheets, JavaScript files, and images. The update to
version 4.3.0 brings several improvements and new features to enhance the management and
processing of frontend assets in your Grails projects.

The asset-pipeline plugin 4.3.0 offers new features for managing and processing your
frontend assets, ensuring they are efficiently bundled and served to your users.

9. Spring 5.3:

Grails 6 isbuilt on Spring 5.3.27. If your project uses Spring-specific features, refer to the
Upgrading to Spring 5.3 guide.

Spring 5.3 introduces enhancements and fixes to the Spring framework, providing you with

the latest improvements in dependency injection, web frameworks, and other Spring-related
functionalities.

10. Spring Boot 2.7:

https://mongodb.github.io/mongo-java-driver/4.0/upgrading/
https://github.com/spring-projects/spring-framework/wiki/Upgrading-to-Spring-Framework-5.x#upgrading-to-version-53

Grails 6 updates to Spring Boot 2.7. For more information, consult the Spring Boot 2.7
Release Notes

Spring Boot 2.7 comes with new features, performance enhancements, and compatibility
improvements, making it a solid foundation for your Grails application.

11. Micronaut 3.9.3:

Grails 6 is shipped with Micronaut 3.9.3. If you are using specific Micronaut features, refer
to the Upgrading to Micronaut 3.x guide.

Micronaut 3.9.3 brings new capabilities, improvements, and bug fixes, empowering your
application with a powerful and lightweight microservices framework.

12. Micronaut for Spring 4.5.1:

Grails 6 is updated to use Micronaut for Spring 4.5.1. For more information, check out the
release notes.

Micronaut for Spring 4.5.1 provides seamless integration between Micronaut and Spring,
allowing you to leverage the strengths of both frameworksin your Grails project.

3.2 Upgrading from Grails4to Grails5

Bump up GrailsVersion
Y ou will need to upgrade your Grails version defined in gradie. properties as:

gradle.properties

Q.r.ai I sVersion=5.2.0

Apache Groovy 3.0.7

Grails 5.1.1 provide support for Groovy 3. We would recommend you to please check the

Release notes for Groovy 3 to update your application in case you are using a specific
feature which might not work in Groovy 3.

Define groovyVersion in gradi e. properti es t0 force the application to use Groovy 3.
Grails 5.1 app’Sgradl e.properties

gradle.properties

Q.r.oovyVer sion=3.0.7

Bump up GORM Version
If you were using GORM, you will need to update the version defined in gradie. properties as.

gradle.properties

gor mVer si on=7.2.0

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.7-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.7-Release-Notes
https://docs.micronaut.io/3.9.3/guide/index.html#upgrading
https://github.com/micronaut-projects/micronaut-spring/releases/tag/v4.5.1
https://groovy-lang.org/releasenotes/groovy-3.0.html
http://gorm.grails.org

Bump up gradle version
Grails5.2.x usesgradle 7.2

gradle-wrapper.properties

d| ;stri butionUrl =https\://services.gradle.org/distributions/gradle-7.2-bin.zip

Also you can run this command

./ gradl ew wr apper --gradle-version 7.2

GORM for MonogDB Sync Driver

The GORM for MongoDB is updated to support latest mongodb-driver-sync. If you are
using GORM for MongoDB and doing something specific to MongoDB Driver or low level
Mongo API then you might want to take alook at Upgrading to the 4.0 Driver

Bump up Asset Pipeline plugin version
The previous version of asset-pipeline is not supported with Grails 5.0 asit is compiled with

aversion of Groovy which is binary incompatible with Groovy 3. So, please update the
plugin version to 3.2.4.

Disabled StringChar ArrayAccessor by default

The previous version of Grails use the st ri ngchar Arrayaccessor Which is enabled by default and
provides optimized accessto j ava. I ang. string internals. In Grails 5.0 it is disabled by default
but you can enable it by Setti ng a system property with name st ri ngchar ar rayaccessor . di sabl ed
and valuer ai se.

Enabling StringCharArrayAccessor would show Illegal ReflectiveA ccess warnings as it
uses reflection to do the optimizations.

Changesin profileyml and feature.yml filesin Grails Profiles

The format of how dependencies are defined in features and profiles has been changed. See
the section on Application Profiles for more information.

Deprecation of dot navigation of Grails configuration

In order to reduce complexity, improve performance, and increase maintainability, accessing
configuration through dot notation (config.a.b.c) has been deprecated. This functionality will
be removed in afuture release.

Also, you would see awarning message if you are accessing configuration through the dot
notation.

The recommended way to access configuration is:

grail sApplication.config.getProperty("hola", String.class)

Deprecated Classes

® org.grails.config.NavigableMap

https://mongodb.github.io/mongo-java-driver/4.0/upgrading/
http://docs.grails.org/6.1.2/api/org/grails/config/NavigableMap.html

® org.grails.config.NavigableM apConfig
® org.grails.config.NavigableM apPropertySource
Spring 5.3

Grails 5.0.0.RC1 is built on Spring 5.3.2 See the Upgrading to Spring 5.3 if you are using
Spring specific features.

Spring Boot 2.4

Grails 5.1.1 updates to Spring Boot 2.6. Please check Spring Boot 2.6 Release Notes for
more information.

Micronaut 3.2.0

Grails5.1.1 is shipped with Micronaut 3.2.0. Please check the Upgrading to Micronaut 3.x if
you are using a specific feature.

Micronaut for Spring 4.0.1

Grails5.1.1 isupdated to Micronaut for Spring 4.0.1, please check out release notes for
more information.

Gradle 7.x

Compile dependency configuration aswell as others have been removed from Gradle
7.X. In previous version they wer e deprecated.

Replace configurations:

build.gradle

conpile -> inplenentation
testConpile -> testlnpl enentation
runtime -> runtimeOnly

More information in Gradle upgrade docs Gradle upgrade docs

Pluginsin multi-project setup

If you have grails plugins as part of multi-project builds you should also replace the conpi 1 e
With i mpl ement at i on CONfiguration.

Additionally if your main application relied on the dependencies declared by the plugin you
need to apply further changes.

To make the dependencies available again you have to declare them with api configuration.
Y ou also have to apply thejava-1ibrary gradle plugin in your plugin project.

More information gradle java-library-plugin

3.3 Upgrading from Grails 3.3.x to Grails4

Bump up GrailsVersion

http://docs.grails.org/6.1.2/api/org/grails/config/NavigableMapConfig.html
http://docs.grails.org/6.1.2/api/org/grails/config/NavigableMapPropertySource.html
https://github.com/spring-projects/spring-framework/wiki/Upgrading-to-Spring-Framework-5.x#upgrading-to-version-53
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.6-Release-Notes
https://docs.micronaut.io/3.2.0/guide/index.html#upgrading
https://github.com/micronaut-projects/micronaut-spring/releases/tag/v4.0.1
https://docs.gradle.org/current/userguide/upgrading_version_6.html#sec:configuration_removal
https://docs.gradle.org/current/userguide/java_library_plugin.html

Y ou will need to upgrade your Grails version defined in gradi e. properti es.
Grals 3 app'SgradI e.properties

gradle.properties

grail sVersion=3. 3.8

Grails 4 app’SgradI e.properties

gradle.properties

grailsVersion=4.0.4

Bump up GORM Version

If you were using GORM, you will need to update the version defined in gradi e. properti es.

Grails3 app’ Sgradl e. properties
gradle.properties

gor mVer si on=6. 1. 10. RELEASE

Grails4 app’ Sgradl e. properties
gradle.properties

gor nVer si on=7.0. 4

Move GORM DSL Entriesto runtime.groovy

GORM DSL entries should be move to runti re. gr covy. FOr instance, using following GORM
configuration in the appi i cat i on. groovy 1S NOt supported and will break the application:

grails.gormdefault. mapping = {
id generator: 'identity'

}
Spring 5 and Spring Boot 2.1

Grails 4.0 isbuilt on Spring 5 and Spring Boot 2.1. See the migration guide and release
notes if you are using Spring specific features.

Hibernate 5.4 and GORM 7.x

Grails 4.x supports a minimum version of Hibernate 5.4 and GORM 7.x. Several changes
have been made to GORM to support the newer version of Hibernate and simplify GORM
itself.

The details of these changes are covered in the GORM upgrade documentation.

Spring Boot 2.1 Actuator

Please check the Spring Boot Actuator documentation since it has changed substantially

http://gorm.grails.org
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.1-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.1-Release-Notes
http://gorm.grails.org/7.0.x/hibernate/manual/index.html#upgradeNotes
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html

from Spring Boot 1.5 the version Grails 3.x used.
If you had configuration such as:

grails-app/conf/application.yml - Grails 3.3.x

endpoi nt s:
enabl ed: false
j mx:
enabl ed: true
uni que- nanes: true

replace it with:

grails-app/conf/application.yml - Grails 4.x

spring:
j mx:
uni gue- nanes: true
nmanagement :
endpoi nts:
enabl ed- by-default: false

Spring Boot Developer Tools and Spring L oaded

Previous versions of Grails used areloading agent called Spring Loaded. Since thislibrary is
no longer maintained and does not support Java 11 support for Spring Loaded has been
removed.

As areplacement, Grails 4 applications include Spring Boot Developer Tools dependencies
in the bui 1 d. gradi e build script. If you are migrating a Grails 3.x app, please include the
following set of dependencies:

build.gradle

'c'o.nfi gurations {
devel opnent Onl y
runti med asspath {
ext endsFrom devel opnent Onl y
}
}

dependenci es {
devel opnent Onl y(" or g. spri ngf ranewor k. boot : spri ng- boot - devt ool s")

Also you should configure the necessary excludes for Spring Developer Toolsin
application.ym :

spring:
devt ool s:
restart:
excl ude:
- grails-app/views/**
- grails-app/il8n/**
- grails-app/conf/**

The above configuration prevents the server from restarting when views or message bundles
are changed.

Y ou can use Spring Developer Tools in combination with a browser extension such asthe
Chrome LiveReload extension to get automatic browser refresh when you change anything
in your Grails application.

https://github.com/spring-projects/spring-loaded
https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-devtools.html
https://chrome.google.com/webstore/detail/livereload/jnihajbhpnppcggbcgedagnkighmdlei

Spring Boot Gradle Plugin Changes

Grails 4 isbuilt on top of Spring Boot 2.1. Grails 3 apps were built on top of Spring Boot
1x.

Your Grails 3 app’Sbui I d. gradi e May have such configuration:

build.gradle

boot Run {
addResources = true

}

Grails 4 apps are built on top of Spring Boot 2.1. Starting from Spring Boot 2.0, the
addresour ces property no longer exists. Instead, you need to set the sourceResources property
to the source set that you want to use. Typically that’s sour cesets. mi n. Thisis described in
the Spring Boot Gradle plugin’ s documentation.

Your Grails 4 app’ Shui I d. gradi e Can be configured:

build.gradle

boot Run {
sour ceResour ces sourceSets. nain

}

Building executablejarsfor Grails Plugins

Spring Boot’s new Gradle Plugin:

The bootRepackage task has been replaced with bootJar and bootWar tasks for building
executable jars and wars respectively. Both tasks extend their equivalent standard Gradle jar
or war task, giving you access to all of the usual configuration options and behaviour.

If you had configuration such as:

build.gradle | Grails 3

/1 enable if you wish to package this plugin as a standal one application
boot Repackage. enabl ed = fal se

replace it with:
build.gradle | Grails 4

/1 enable if you wish to package this plugin as a standal one application
boot Jar. enabl ed = fal se

Upgradingto Gradle5
Grails 3 apps by default used Gradle 3.5. Grails 4 apps use Gradle 5.

To upgrade to Gradle 5 execute:

./ gradl ew wr apper --gradle-version 5.0

Dueto changesin Gradle 5, transitive dependencies are no longer resolved for plugins. If
your project makes use of a plugin that has transitive dependencies, you will need to add

those explicitly to your bui i d. gradi e file.

If you customized your app’ s build, other migrations may be necessary. Please check Gradle

https://docs.spring.io/spring-boot/docs/2.0.0.M3//gradle-plugin/reference/html/#running-your-application-reloading-resources
https://spring.io/blog/2017/04/05/spring-boot-s-new-gradle-plugin
http://gradle.org
https://docs.gradle.org/current/userguide/upgrading_version_4.html#rel5.0:pom_compile_runtime_separation
https://docs.gradle.org/current/userguide/upgrading_version_4.html

Upgrading your build documentation. Especially notice, that default Gradle daemon now
starts with 512MB of heap instead of 1GB. Please check Default memory settings changed
documentation.

Groovy language updateto 2.5.6

Keep in mind, that with grails 4.0.x there is aminor groovy language upgrade (e.g. 3.3.9.
used groovy 2.4.x), which requires a couple of changes, that are immediately obvious when
trying to compile your source code. However there are also issues with changed
implementations of core linkedlist functions! Check an overview of the breaking changes

here: Breaking changes of Groovy 2.5

Removed date helper functions

Most common issue is that date util functions have been moved to individual project, e.g
new Date().format("ddMMyyyy") no longer works without adding:

build.gradle

dependenci es {
i npl enent ati on "org. codehaus. groovy: groovy-dateutil:3.0.4"
}

Changed linked list method implementations
Check whether you are using the groovy version of linkedlist implementations:

® 1.pop() - Will nolonger remove the last, but the first element of the list. Replace it with
H.rmmvdﬁm()iSfGCOﬁWnended.

® [1.push(..) - will nolonger add to the end, but to the beginning of the list. Replace it with
[1.add(..) 1Srecommended.

H2 Web Console

Spring Boot 2.1 includes native support for the H2 database web console. Since thisis
already included in Spring Boot the equivalent feature has been removed from Grails. The
H2 console is therefore now available at / h2- consol e instead of the previous URI of / dbconsol e.
See Using H2's Web Console in the Spring Boot documentation for more information.

Upgrade Hibernate

If you were using GORM for Hibernate implementation in your Grails 3 app, you will need
to upgrade to Hibernate 5.4.

A Grails 3 bui 1 d. gradi e SUCh &S;

build.gradle

dependenci es {
i npl ementation "org.grails. plugins:hibernate5"
i mpl ement ation "org. hi bernate: hi bernate-core:5.1.5. Final"

}

will bein Grails 4:

build.gradle

dependenci es {

..inplenantation "org.grails. plugins: hi bernate5"

https://docs.gradle.org/current/userguide/upgrading_version_4.html
https://docs.gradle.org/current/userguide/upgrading_version_4.html#rel5.0:default_memory_settings
https://groovy-lang.org/releasenotes/groovy-2.5.html#Groovy2.5releasenotes-Breakingchanges
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-sql-h2-console

i npl ementation "org. hi bernate: hi bernate-core:5.4.0.Final"

}

Migrating to Geb 2.3

Geb 1.1.x (aJDK 1.7 compatible version) was the version shipped by default with Grails 3.
Grails 4 isno longer compatible with Java 1.7. Y ou should migrate to Geb 2.3.

In Grails 3, if your build.gradle looks like:

build.gradle

dependenci es {

testConpile "org.grails.plugins:geb:1.1.2"

testRuntime "org. sel eni unhq. sel eni um sel eni umhtm unit-driver:2.47.1"
testRuntime "net.sourceforge. htmunit:htmunit:2. 18"

}

In Grails 4, you should replace it with:

build.gradle

buil dscript {
repositories {

}

dependenci es {

éiésspath "gradl e. pl ugi n. com ener gi zedwor k. webdri ver - bi nari es: webdri ver - bi nari es- gradl e- pl ugi n: $webdri ver B

repositories {
}
apply plugin:"idea"

ébbly pl ugi n: "com ener gi zedwor k. webdri ver-bi naries" (1)

dependenci es {

testConpile "org.grails.plugins:geb" (4)

testRuntine "org. sel eni umhg. sel eni um sel eni um chrone-dri ver: $sel eni unVersi on" (5)

test Runti me "org. sel eni unhg. sel eni um sel eni um firefox-driver: $sel eni umVersi on" (5)
testRuntine "org. sel eni unhg. sel eni um sel eni um safari-driver: $sel eni unSaf ari Dri ver Versi on" (5)

test Conpi | e "org. sel eni unhq. sel eni um sel eni um renpt e-dri ver: $sel eni unVersi on" (5)
test Conpi l e "org. sel eni unhqg. sel eni um sel eni um api : $sel eni unVer si on" (5)
test Conpi |l e "org. sel eni umhg. sel eni um sel eni um support: $sel eni unVer si on" (5)

}

webdri verBinaries {
chronedriver "$chroneDriverVersion" (2)
geckodriver "$geckodriverVersion" (3)

}

tasks. wi t hType(Test) {
systenProperty "geb.env", System getProperty('geb.env')
systenProperty "geb.build.reportsDir", reporting.file("geb/integrationTest")
systenProperty "webdriver.chrone.driver", System getProperty('webdriver.chrone.driver')
systenProperty "webdriver.gecko.driver", System getProperty('webdriver.gecko.driver')

}
gradle.properties

gebVersion=2.3

sel eni unVer si on=3. 12. 0

webdri ver Bi nari esVer si on=1. 4

hi ber nat eCor eVer si on=5. 1. 5. Fi na
chroneDriver Version=2. 44 (2)
geckodri ver Versi on=0.23.0 (3)

sel eni unBaf ari Dri ver Ver si on=3. 14. 0

1 Includes Webdriver binaries Gradle plugin.
2 Set the appropriate Webdriver for Chrome version.

3 Set the appropriate Webdriver for Firefox version.

https://plugins.gradle.org/plugin/com.energizedwork.webdriver-binaries
http://chromedriver.chromium.org
https://github.com/mozilla/geckodriver/releases

4 Includes the Grails Geb Plugin dependency which has atransitive dependency to geb- spock
. Thisis the dependency necessary to work with Geb and Spock.

5 Selenium and different driver dependencies.

Create also a Geb Configuration fileat srcrint egration-test/resources/ GebConfi g. groovy.

src/integration-test/resources/ GebConfig.groovy

i mport org.openga. sel eni um chrone. ChroneDri ver

i nport org. openga. sel eni um chrone. Chr omeOpt i ons

i mport org.openga. sel eniumfirefox. FirefoxDriver

i mport org.openga. sel enium firefox. FirefoxOptions
i mport org.openga. sel enium safari.SafariDriver

envi ronnents {
Il You need to configure in Safari -> Develop -> Allowed Renote Autonmation

safari {
driver = { new SafariDriver() }

}
/1 run via “./gradl ew - Dgeb. env=chrone i T"
chrone {
driver = { new ChroneDriver() }
}

/1 run via “./gradl ew - Dgeb. env=chroneHeadl ess i T"
chroneHeadl ess {
driver = {
ChromeQptions o = new ChromeQOptions()
0. addAr gunent s(' headl ess')
new ChroneDri ver (0)

}

/1 run via “./gradl ew - Dgeb. env=firefoxHeadl ess i T"
firefoxHeadl ess {
driver = {
Firef oxOptions o = new FirefoxOptions()
0. addAr gunment s(' - headl ess')
new FirefoxDriver(0)

}
}
/1 run via “./gradl ew - Dgeb. env=firefox i T"
firefox {
driver = { new FirefoxDriver() }
}

}

Deprecated classes

The following classes, which were deprecated in Grails 3.x, have been removed in Grails 4.
Please, check the list below to find a suitable replacement:

Removed Class Alternative

org.grails.datastore.gormvalidation.constraints. Uni queConstrai nt org.grails.datastore.gormvalidation.constraints.

grails.util.BuildScope

grails.transaction. Grail sTransacti onTenpl ate grails.gormtransactions. Gail sTransacti onTenpl at

org.grails.transaction.transform Rol | backTransform org.grails.datastore.gormtransactions.transform

https://github.com/grails3-plugins/geb
http://www.gebish.org
http://www.gebish.org/manual/current/#configuration

grails.transacti on. Not Transacti onal

grails.transaction. Rol | back

grails.transaction. Transacti onal

org.grails.config.FlatConfig

org.grails.core. nmetacl ass. Met aCl assEnhancer

org.grails.core.util.d assPropertyFetcher

org.grails.transaction.transform Transacti onal Transform

grails. core. Conponent Capabl eDonai nCl ass

grails.core. Grail sDomai nCl assProperty

org.grails.core. Defaul t Grail sDomai nCl assProperty

org.grails.core. MetaG ai | sDonmai nCl assProperty

org.grails.core.support. G ail sDonmai nConfigurationUtil

org. grails. plugins. domai n. Domai nC assPl ugi nSuppor t

org. grails. plugins. domai n. support. Gor mApi Support

org.grails. plugins. domai n. support. G ail sDonai nCl assC eaner

grails.validation. Abstract Constrai nt

grails.validation. Abstract Vet oi ngConstr ai nt

grails.validation. Cascadi ngVal i dat or

grails.gormtransactions. Not Transacti onal

grails.gormtransactions. Rol | back

grails.gormtransactions. Transacti onal

Usetraits instead.

org.grails.datastore. mappi ng.refl ect. G assPropert

org.grails.datastore.gormtransactions.transform

Usethe org. grails. datastore. mappi ng. nodel . Mappi

Usethe org. grails. datast ore. mappi ng. nodel . Mappi

org.grails.datastore. mappi ng. nodel . Mappi ngFact ory

Handled by org. grails. datast ore. mappi ng. nodel . N

Use org.grails.datastore.gormvalidation.constra

org.grails.datastore.gormvalidation.constraints

grails.gormvalidation. Cascadi ngVal i dat or

grails.validation. Constrai nedProperty

grails.validation.Constraint

grails.validation.ConstraintFactory

grails.validation. Vetoi ngConstraint

grails.validation. ConstraintException

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

grails.validati

grails.validati

grails.validati

grails.validati

grails.validati

grails.validati

grails.validati

grails.validati

grails.validati

grails.validati

grails.validati

grails.validati

on.

on.

on.

on.

on.

on.

on.

on.

on.

on.

on.

on.

Bl ankConst r ai nt

Const rai nedPropertyBui | der

Constrai nt Del egat e

Const rai nt sEval uat or Fact or yBean

Cr edi t CardConstrai nt

Def aul t Const r ai nt Eval uat or

Domai nCl assPropert yConpar at or

Emai | Constrai nt

G ai | sDomai nCl assVal i dat or

I nLi st Constrai nt

Mat chesConst r ai nt

MaxConst r ai nt

grails.gormvalidation. Constrai nedProperty

grails.gormvalidation. Constraint

org.grails.datastore.gormvalidation.constraints.

grails.gormvalidation. Vetoi ngConstrai nt

org.grails.datastore. gormvalidation.constraints.

org.grails.datastore.gormvalidation.constraints.

org.grails.datastore.gormvalidation.constraints.

org.grails.datastore. gormvalidation.constraints.

org.grails.datastore.gormvalidation.constraints.

org.grails.datastore.gormvalidation.constraints.

grails.gormvalidation. PersistentEntityValidator

org.grails.datastore.gormvalidation.constraints.

org.grails.datastore.gormvalidation.constraints.

org.grails.datastore. gormvalidation.constraints.

org.grails.validation. MaxSi zeConstr ai nt

org.grails.validation. M nConstraint

org.grails.validation. MnSizeConstraint

org.grails.validation. Not Equal Constrai nt

org.grails.validation.Nullabl eConstraint

org.grails.validation. RangeConstrai nt

org.grails.validation. Scal eConstraint

org.grails.validation.SizeConstraint

org.grails.validation. Ul Constraint

org.grails.validation. ValidatorConstraint

org.grails.validation.routines. Donai nVal i dat or

org.grails.validation.routines.|netAddressValidator

org.grails.validation.routines. RegexVali dat or

org.grails.validation.routines.ResultPair

org.grails.validation.routines. Ul Validator

grails.web. JSONBui | der

Grails-Java8

org.grails.datastore.gormvalidation.constraints.

org.grails.datastore. gormvalidation.constraints.

org.grails.datastore.gormvalidation.constraints.

org.grails.datastore. gormvalidation.constraints.

org.grails.datastore.gormvalidation.constraints.

org.grails.datastore.gormvalidation.constraints.

org.grails.datastore.gormvalidation.constraints.

org.grails.datastore.gormvalidation.constraints.

org.grails.datastore.gormvalidation.constraints.

org.grails.datastore. gormvalidation.constraints.

Replaced by newer version of commons-valic

Replaced by newer version of commons-valic

Replaced by newer version of commons-valic

Replaced by newer version of commons-valic

Replaced by newer version of commons-valic

groovy. json. Stream ngJsonBui | der

For those who have added a dependency on the grai 1 s-javas plugin, al you should need to do
issimply remove the dependency. All of the classes in the plugin have been moved out to

their respective projects.

Profiles Deprecation

A few of the profiles supported in Grails 3.x will no longer be maintained going forward and
asaresult it isno longer possible to create applications when them in the shorthand form.
When upgrading existing projects, it will be necessary to supply the version for these
profiles.

hd org.grails.profiles:angularjs org.grails.profiles:angularjs:1.1.2
b org.grails.profiles:wbpack org.grails.profiles:wbpack:1.1.6
°

org.grails.profiles:react-webpack org.grails.profiles:react-webpack:1.0.8

Scheduled M ethods

In Grails 3 no configuration or additional changes were necessary to use the Spring
@chedul ed @anNNotation. In Grails 4 you must apply the @nabi eschedut i ng @nnotation to your
application classin order for scheduling to work.

4 Configuration

It may seem odd that in aframework that embraces "convention-over-configuration” that we
tackle this topic now. With Grails' default settings you can actually develop an application
without doing any configuration whatsoever, as the quick start demonstrates, but it’s
important to learn where and how to override the conventions when you need to. Later
sections of the user guide will mention what configuration settings you can use, but not how
to set them. The assumption is that you have at least read the first section of this chapter!

4.1 Basic Configuration

Configuration in Grailsis generally split across 2 areas: build configuration and runtime
configuration.

Build configuration is generally done via Gradle and the bui 1 d. gradi e file. Runtime
Configuration is by default SpeCIfled in YAML inthe grail s-app/ conf/application.yn file.

If you prefer to use Grails 2.0-style Groovy configuration then it is possible to specify
configuration using Groovy’s ConfigSlurper syntax. Two Groovy configuration files are
available: grail s-app/ conf/application. groovy and grail s-app/ conf/runtine. groovy.

1. Useapplication. groovy fOr configuration that doesn’t depend on application classes

2. Useruntine. groovy for configuration that does depend on application classes

This separation is necessary because configuration values defined in appi i cati on. groovy are
available to the Grails CLI, which needsto be able to load appi i cati on. groovy before the
application has been compiled. References to application classesin appi i cati on. groovy Will
cause an exception when these commands are executed by the CLI:

Error occurred running Grails CLI:
startup failed:scriptl4738267015581837265078. groovy: 13: unable to resolve class com foo. Bar

http://docs.groovy-lang.org/latest/html/documentation/#_configslurper

For Groovy configuration the following variables are available to the configuration script:

Variable Description

userHome L ocation of the home directory for the
account that is running the Grails application.
Location of the directory where you installed

grailsHome Grails. If the cral Ls_Hove environment variable
isset, it isused.
The application name as it appearsin

appName build.gradle.

. The application version asit appearsin
gppVersion build.gradle.
For example:

ny.tmp.dir = "${userHone}/ . grails/tnp"
Accessing Configuration with GrailsApplication

If you want to read runtime configuration settings, i.e. those defined in appi i cation. ym , USE
the grailsApplication object, which is available as a variable in controllers and tag libraries:

class MyController {
def hello() {
def recipient = grailsApplication.config.getProperty('foo.bar.hello")

render "Hello ${recipient}"
}
}

The confi g property of the grai 1 sappii cati on Object is an instance of the Config interface and
provides a number of useful methods to read the configuration of the application.

In particular, the get property method (seen above) is useful for efficiently retrieving
configuration properties, while specifying the property type (the default type is String)
and/or providing a default fallback value.

class MyController {

def hell o(Recipient recipient) {
//Retrieve Integer property 'foo.bar.nax.hellos', otherw se use value of 5
def max = grail sApplication.config.getProperty('foo.bar.mx.hellos', Integer, 5)

//Retrieve property 'foo.bar.greeting’ w thout specifying type (default is String), otherw se use value "He
def greeting = grailsApplication.config.getProperty('foo.bar.greeting', "Hello")

def nessage = (recipient.receivedHell oCount >= max) ?
"Sorry, you've been greeted the max nunber of tinmes" : "${greeting}, ${recipient}"”

}

render nmessage

}
}

Notice that the confi g instance is a merged configuration based on Spring’ s PropertySource
concept and reads configuration from the environment, system properties and the local
application configuration merging them into a single object.

http://docs.grails.org/6.1.2/api/grails/core/GrailsApplication.html
http://docs.grails.org/6.1.2/api/grails/config/Config.html
https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/context/annotation/PropertySource.html

arai | sAppl i cati on CaN be easily injected into services and other Grails artifacts:

import grails.core.*

class MyService {
Grail sApplication grail sApplication

String greeting() {
def recipient = grailsApplication.config.getProperty('foo.bar.hello")
return "Hello ${recipient}"

}
}

GrailsConfigurationAwar e | nterface

Accessing configuration dynamically at runtime can have a small effect on application
performance. An alternative approach isto implement the GrailsConfigurationAware
interface, which provides aset conf i gurati on method that accepts the application configuration
as aparameter when the classisinitialized. Y ou can then assign relevant configuration
properties to instance properties on the class for later usage.

The cont i g instance has the same properties and usage as the injected a ai 1 sappl i cati on cONfig
object. Here is the service class from the previous example, using a ai I sconfi gurat i onAvar e
instead of injecting a ai I sAppl i cati on:
inport grails.core.support.GailsConfigurati onAware
class MyService inplements Gail sConfigurationAware {

String recipient

String greeting() {

return "Hello ${recipient}"”
}

voi d set Configuration(Config config) {
reci pient = config.getProperty('foo.bar.hello")
}

}

Spring Value Annotation

Y ou can use Spring’'s Vaue annotation to inject configuration values:

i mport org.springfranework. beans. factory. annotation. *
class MyController {

@/al ue(' ${foo. bar. hello}")

String recipient

def hello() {
render "Hello ${recipient}"
}

}

In Groovy code you must use single quotes around the string for the value of the vai ue
annotation otherwise it isinterpreted as a GString not a Spring expression.

Asyou can see, when accessing configuration settings you use the same dot notation as
when you define them.

4.1.1 Optionsfor the YML format Config

The application.yn file wasintroduced in Grails 3.0, and YAML is now the preferred format
for configuration files.

Using system properties/ command line arguments

http://docs.grails.org/6.1.2/api/grails/core/support/GrailsConfigurationAware.html
https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/beans/factory/annotation/Value.html

Suppose you are using the soec_cowecti ov_stri ne cOmmand line argument and you want to
access the same in the yml file then it can be done in the following manner:

producti on:
dat aSour ce:
url: ' ${JDBC_CONNECTI ON_STRI NG "'

Similarly system arguments can be accessed.

Y ou will need to have thisin bui d. gradi e to Modify the boot run target if ./ gradi ew boot Run IS
used to start the application

boot Run {
systenProperti es = System properties
}

For testing the following will need to change thetest task asfollows

test {
systenProperties = System properties
}

External configuration
Grailswill read appi i cation. (properties|yni) fromthe./config Or the current directory by

default. As Grailsis a SpringBoot configuration options are available as well, for
documentation please consult:

https://docs.spring.io/spring-boot/docs/2.7.16/reference/html/features.html#features.external -config.files

4.1.2 Built in options
Grails has a set of core settings that are worth knowing about. Their defaults are suitable for

most projects, but it’simportant to understand what they do because you may need one or
more of them later.

Runtime settings

On the runtime front, i.€. grai I s- app/ conf/ appl i cati on. yn , there are quite afew more core
settings:

® grails. enable. nativezascii - Set thisto falseif you do not require native2ascii conversion of
Grailsi18n properties files (default: true).

® grails.views. defaul t. codec - SetSthe default encoding regime for GSPs - can be one of 'none’,
'html’, or 'base64' (default: 'none’). To reduce risk of XSS attacks, set thisto 'html'.

® grails.vieus. gsp. encoding - The file encoding used for GSP source files (default: 'utf-8").

® grails.mne file. extensions - WWhether to use the file extension to dictate the mime typein
Content Negotiation (default: true).

® grails. mine types - A Mmap of supported mime types used for Content Negotiation.

® grails.serverURL - A string specifying the server URL portion of absolute links, including
server name e.g. grails.serverURL="http://my.yourportal.com". See createl ink. Also used
by redirects.

® grails.views. gsp. sitemesh. preprocess - Determines whether SiteM esh preprocessing happens.
Disabling this slows down page rendering, but if you need SiteMesh to parse the generated

https://docs.spring.io/spring-boot/docs/2.7.16/reference/html/features.html#features.external-config.files
https://gsp.grails.org/6.1.0/ref/Tags/createLink.html

HTML from a GSP view then disabling it is the right option. Don’t worry if you don’t
understand this advanced property: leave it set to true.

® grails.reload. excludes aNd grails. rel oad.incl udes - Configuri ng these directives determines the
reload behavior for project specific source files. Each directive takes alist of strings that are
the class names for project source files that should be excluded from reloading behavior or
included accordingly when running the application in development with the boot run task. If
the grails. rel oad. i ncl udes directive is configured, then only the classes in that list will be
reloaded.

4.1.3 Logging

Since Grails 3.0, logging is handled by the L ogback logging framework and can be
configured with the grai | s-app/ conf/ | ogback. xm file.

Since Grails 5.1.2 support for groovy configuration (gr ai I s- app/ conf /1 ogback. gr oovy) has been
removed (by logback 1.2.9). It is possible to add back groovy configuration by adding the
logback-groovy-config library to your project.

For more information on configuring logging refer to the Logback documentation on the
subject.

4.1.3.1 Logger Names

Grails artifacts (controllers, services ...) get injected a1 og property automatically.

Prior to Grails 3.3.0, the name of the logger for Grails Artifact followed the convention
grails. app. <type>. <cl assNane>, where type isthe type of the artifa(:t, for example, controllers OF
servi ces, and ci assnane 1S the fully qualified name of the artifact.

Grails 3.3.x simplifies logger names. The next examplesillustrate the changes:

BookControl | er. groovy |ocated at grail s-app/ control | ers/ conf company NOT annotated with @ f4)
Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)

com conpany. BookControl | er grails.app.controllers.com conpany. BookControl | er
BookControl | er. groovy located at grail s-app/controll ers/com conpany annotated with @si £ 4j.
Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)

com conpany. BookControl | er com conpany. BookControl | er

BookSer vi ce. gr oovy located at grai | s-app/ servi ces/ conf conpany NOT annotated with @si 1 4j

http://logback.qos.ch
https://github.com/virtualdogbert/logback-groovy-config
http://logback.qos.ch/manual/groovy.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html

Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)
com conpany. BookSer vi ce grails. app. services.com conpany. BookSer vi ce
BookSer vi ce. gr oovy located at grai | s-app/ servi ces/ conf conpany annotated with @l f4)

Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)
com conpany. BookSer vi ce com conpany. BookSer vi ce

BookDet ai | . gr oovy located at src/ mai n/ groovy/ coni conpany annotated with @si £ 4

Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)

com conpany. BookDet ai | com conpany. BookDet ai |

4.1.3.2 Masking Request Parameters From Stacktrace
L ogs

When Grails logs a stacktrace, the |og message may include the names and values of all of
the request parameters for the current request. To mask out the values of secure request
parameters, specify the parameter names in the grai i s. excepti onresol ver . par ans. excl ude CONfigQ

property:

grails-app/conf/application.ymi

grails:
exceptionresol ver:
par ans:
excl ude:
- password
- creditCard

Request parameter logging may be turned off atogether by setting the

grail's. exceptionresol ver. | ogRequest Par amet ers CONfig property to false. The default value istrue
when the application is running in DEVELOPMENT mode and false for all other
environments.

grails-app/conf/application.yml

grails:
exceptionresol ver:
| ogRequest Par aneters: fal se

4.1.3.3 External Configuration File

If you set the configuration property 1 oggi ng. confi g, YOU Can iNStruct Logback t0 Use an external
configuration file.

grails-app/conf/application.yml

http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html

| oggi ng:
config: /Users/ne/config/logback. groovy

Alternatively, you can supply the configuration file location with a system property:
$./gradl ew - D oggi ng. confi g=/ User s/ ne/ confi g/ | ogback. gr oovy boot Run

Or, you could use an environment variable:

$ export LOGAE NG _CONFI G=/ User s/ me/ confi g/ | ogback. gr oovy
$./ gradl ew boot Run

4.1.4 GORM

Grails provides the following GORM configuration options:

® grails.gormfail OnError - If setto true, causes the save() method on domain classes to throw a
grails.validation. validationexception If validation fails during a save. This option may also be
assigned alist of Strings representing package names. If the value is alist of Strings then the
faillOnError behavior will only be applied to domain classes in those packages (including
sub-packages). See the save method docs for more information.

For example, to enable failOnError for all domain classes:

grails:
gorm
fail OnError: true

and to enable failOnError for domain classes by package:

grails:
gorm
fail OnError:
- com conpanynane. sonepackage
- com conpanynane. soneot her package

4.1.5 Configuringan HT TP proxy

To setup Grailsto use an HTTP proxy there are two steps. Firstly you need to configure the
grai1's CLI to be aware of the proxy if you wish to use it to create applications and so on.
This can be done using the arai Ls_crts environment variable, for example on Unix systems:

export GRAILS_OPTS="-Dhttps. proxyHost=127.0.0.1 -Dhttps. proxyPort=3128 -Dhttp. proxyUser=test -Dhttp.proxyPassword=t

The default profile repository isresolved over HTTPS SO ht t ps. proxyPort @nd htt ps. proxyUser
are used, however the username and password are specified with nttp. proxyuser and
htt p. pr oxyPasswor d

For Windows systems the environment variable can be configured under »y

Conput er/ Advanced/ Envi ronnment Vari abl es.

With this configuration in place the grai 1s command can connect and authenticate viaa
proxy.

Secondly, since Grails uses Gradle as the build system, you need to configure Gradle to
authenticate via the proxy. For instructions on how to do this see the Gradle user guide
section on the topic.

4.2 The Application Class

https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy
https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy

Every new Grails application features an appi i cati on class within the grai 1 s-app/init directory.

The appii cati on Class subclasses the Grail sSAutoConfiguration class and features astatic void
mai n Method, meaning it can be run as aregular application.

4.2.1 Executing the Application Class

There are several ways to execute the appi i cati on Class, if you are using an IDE then you can
simply right click on the class and run it directly from your IDE which will start your Grails
application.

Thisisalso useful for debugging since you can debug directly from the IDE without having
to connect a remote debugger when using the ./ gr adi ew boot Run - - debug- j vmcOmmand from the
command line.

Y ou can also package your application into arunnable WAR file, for example:

$./gradl ew boot War
$ java -jar build/libs/nyapp-0.1.war

Thisisuseful if you plan to deploy your application using a container-less approach.

4.2.2 Customizing the Application Class
There are several ways in which you can customize the appi i cati on Class.
Customizing Scanning

By default Grails will scan all known source directories for controllers, domain class etc.,
however if there are packages in other JAR files you wish to scan you can do so by
overriding the packagenames() method of the appi i cati on Class:

class Application extends G ail sAutoConfiguration {

@verride
Col | ecti on<String> packageNanes() {

super . packageNanes() + ['nmy.additional.package']
}

}
Registering Additional Beans
The appl i cati on Class can also be used as a source for Spring bean definitions, ssmply define

amethod annotated with the Bean and the returned object will become a Spring bean. The
name of the method is used as the bean name:

class Application extends Gail sAutoConfiguration {
@Bean

M/ Type nyBean() {
return new MyType()
}

}

4.2.3 The Application LifeCycle

The appi i cati on class aso implements the Grail sA pplicationLifeCycle interface which all
plugins implement.

This means that the appi i cati on Class can be used to perform the same functions as a plugin.

http://docs.grails.org/6.1.2/api/grails/boot/config/GrailsAutoConfiguration.html
https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/context/annotation/Bean.html
http://docs.grails.org/6.1.2/api/grails/core/GrailsApplicationLifeCycle.html

Y ou can override the regular plugins hooks such as dow t hspri ng, dow t hAppl i cat i onCont ext and
so on by overriding the appropriate method:

class Application extends G ail sAutoConfiguration {
@verride
Closure doWthSpring() {
{->
ny Spri ngBean(MyType)

4.3 Environments

Per Environment Configuration

Grails supports the concept of per environment configuration. The appl i cation. yni and

appl i cati on. groovy filesin the graiis-app/cont directory can use per-environment configuration
using either YAML or the syntax provided by ConfigSlurper. As an example consider the
following default appi i cation. ym definition provided by Grails:

envi ronnents:
devel opnent :
dat aSour ce:
dbCreate: create-drop
url: jdbc: h2: mem devDb; MWCC=TRUE; LOCK_TI MEOQUT=10000; DB_CLOSE_ON_EXI T=FALSE
test:
dat aSour ce:
dbCreate: update
url: jdbc:h2: memtest Db; WCC=TRUE; LOCK_TI MEQUT=10000; DB_CLOSE_ON_EXI T=FALSE
producti on:
dat aSour ce:
dbCreate: update
url: jdbc: h2: prodDb; MCC=TRUE; LOCK_TI MEOUT=10000; DB_CLGOSE_ON_EXI T=FALSE
properties:
j nkEnabl ed: true
initial Size: 5

The above can be expressed in Groovy syntax in appl i cation. groovy as follows:

dat aSour ce {
pool ed = fal se
driverd assName = "org. h2.Driver"
username = "sa"
passwor d "

environments {
devel opnent {
dat aSour ce {
dbCreate = "create-drop"
url = "jdbc: h2: mem devDb"
}
}
test {
dat aSour ce {
dbCreate = "update"
url = "jdbc: h2: nem test Db"
}

production {
dat aSour ce {
dbCreate = "update"
url = "jdbc: h2: prodDb"
properties {
j nkEnabl ed = true
initialSize = 5

}

Notice how the common configuration is provided at the top level and then an envi ronment s
block specifies per environment settings for the dbareate and uri properties of the pat asour ce.

http://docs.groovy-lang.org/latest/html/documentation/#_configslurper

Packaging and Running for Different Environments

Grails command line has built in capabilities to execute any command within the context of
a specific environment. The format is:

grails <<environnent>> <<command nane>>

In addition, there are 3 preset environments known to Grails: dev, prod, and test for
devel opnent , production @Nd test . FOr exampleto create aWAR for the test environment you
would run:

grails test war

To target other environments you can pass a grai I s. env Variable to any command:

./ gradl ew boot Run -Dgrails.env=UAT
Programmatic Environment Detection

Within your code, such asin a Gant script or a bootstrap class you can detect the
environment using the Environment class:

inmport grails.util.Environment

switch (Environnent.current) {
case Environment. DEVELOPMENT:
conf i gur eFor Devel opnent ()
br eak
case Environment. PRODUCTI ON:
conf i gur eFor Producti on()
br eak

}

Per Environment Bootstrapping

It's often desirable to run code when your application starts up on a per-environment basis.
To do so you can use the grai I s- app/ini t/Boot St rap. groovy fil€'s support for per-environment
execution:

def init ={ ServletContext ctx ->
environments {
production {
ctx.setAttribute("env", "prod")

devel opnent {
ctx.setAttribute("env", "dev")
}

ctx.setAttribute("foo", "bar")

}

Generic Per Environment Execution

The previous soot st rap example usesthe grai i s. uti | . Environment classinternally to execute.
Y ou can aso use this class yourself to execute your own environment specific logic:

Envi ronment . execut eFor Curr ent Envi ronnent {
production {
// do sonething in production

devel opnent {
/1 do sonething only in devel oprment
}

4.4 The DataSour ce

http://docs.grails.org/6.1.2/api/grails/util/Environment.html

Since Grailsis built on Java technology setting up a data source requires some knowledge of
JDBC (the technology that stands for Java Database Connectivity).

If you use a database other than H2 you need a JDBC driver. For example for MySQL you
would need Connector/J.

Driverstypically comein the form of a JAR archive. It’ s best to use the dependency

resolution to resolve the jar if it'savailable in a Maven repository, for example you could
add a dependency for the MySQL driver likethis:

dependenci es {
runti meOnly 'nysql: nysql -connector-java: 5. 1. 29"
}

Once you have the JAR resolved you need to get familiar with how Grails manages its
database configuration. The configuration can be maintained in either
grails-app/ conf/application.groovy OF grails-app/conf/application.ym. These files contain the
dataSource definition which includes the following settings:

® driverdasshame - The class name of the JDBC driver

® username - The username used to establish a JDBC connection

® password - The password used to establish a JDBC connection

® uri - The JDBC URL of the database

® dbceate - Whether to auto-generate the database from the domain model - one of
'create-drop’, 'create, 'update, 'validate', or 'none

® ool ed - Whether to use a pool of connections (defaults to true)
® |ogsql - Enable SQL logging to stdout

® formatsq - FOrmat logged SQL

® dialect - A String or Class that represents the Hibernate dialect used to communicate with

the database. See the org.hibernate.dialect package for available dialects.

® readanly - If true makes the DataSource read-only, which results in the connection pool
C&”Iﬂg set ReadOnl y(true) ON each connect i on

® iransactional - If ralse leaves the DataSource' s transactionManager bean outside the chained
BE1PC transaction manager implementation. This only applies to additional datasources.

® persistencelnterceptor - 1he default datasource is automatically wired up to the persistence

interceptor, other datasources are not wired up automatically unlessthisisset to true

® oroperties - Extraproperties to set on the DataSource bean. See the Tomcat Pool
documentation. Thereis also a Javadoc format documentation of the properties.

® jmexport - If raise, Will disable registration of IMX MBeans for all DataSources. By default

JMX MBeans are added for DataSources with j nxenabl ed = true iN properties.

® type - The connection pool classif you want to force Grailsto use it when there are more

than one available.

A typical configuration for MySQL in appl i cati on. groovy May be something like:

http://www.mysql.com/downloads/connector/j/
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/dialect/package-summary.html
http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Common_Attributes
https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/tomcat/jdbc/pool/PoolConfiguration.html

dat aSour ce {
pool ed = true
dbCreate = "update"

url = "jdbc: nysql://Iocal host: 3306/ ny_dat abase"
driverd assName = "com nysql . jdbc. Driver”

di al ect = org. hi bernate. dial ect. MySQL5I nnoDBDi al ect
username = "username"

password = "password"

type = "com zaxxer. hi kari . H kari Dat aSour ce"

properties {
jnxEnabled = tr
initial Size = 5
maxActive = 50
minldle =5
max! dl e 25
max Wi t 10000
maxAge = 10 * 60000
ti meBet weenEvi ctionRunsM11is = 5000
m nEvictableldl eTineMIlis = 60000
val i dati onQuery = "SELECT 1"
val i dati onQueryTi neout = 3
val i dationl nterval = 15000
test OnBorrow = true
testWileldle = true
testOnReturn = fal se
jdbclnterceptors = "ConnectionSt at e; St at enent Cache(max=200) "
def aul t Transacti onl sol ati on = java. sqgl . Connecti on. TRANSACTI ON_READ_COWM TTED

ue

}

When configuring the DataSource do not include the type or the def keyword before any of
the configuration settings as Groovy will treat these aslocal variable definitions and they
will not be processed. For example the following isinvalid:

dat aSour ce {
bool ean pooled = true // type declaration results in ignored |ocal variable

Example of advanced configuration using extra properties:

dat aSour ce {
pool ed = true
dbCreate = "update"

url = "jdbc:nysql://1ocal host: 3306/ ny_dat abase"
driverd assName = "com nysql.jdbc. Driver"

di al ect = org. hi bernate. di al ect. \y\SQL5I nnoDBDi al ect
user name = "user nane"

password = "password"

type = "com zaxxer. hi kari . H kari Dat aSour ce"

properties {
/1 Docunentation for Tontat JDBC Pool
/1 http://tontat.apache. org/tontat-7.0-doc/jdbc-pool . htm #Common_Attri butes
/1 https://tontat.apache. org/tontat-7.0-doc/api/org/apache/tontat/jdbc/ pool/ Pool Configuration. htm
j mkEnabl ed = true
initialSize = 5
maxActive = 50

mnldle =5
maxldle = 25
maxWait = 10000

maxAge = 10 * 60000
ti neBet weenEvi cti onRunsM | Iis = 5000
m nEvictableldl eTinreMIlis = 60000
val i dati onQuery = "SELECT 1"
val i dati onQueryTi neout = 3
val i dationl nterval = 15000
testOnBorrow = true
testWiileldle = true
testOnReturn = fal se
i gnor eExcepti onOnPreLoad = true
/1 http://tontat. apache. org/tontat-7.0-doc/jdbc-pool.htm #IJDBC_ i nterceptors
jdbclnterceptors = "ConnectionStat e; St at ement Cache(max=200) "
def aul t Transacti onl sol ati on = java. sql . Connecti on. TRANSACTI ON_READ_COWM TTED // safe defaul t
/'l controls for |eaked connections
abandonWhenPer cent ageFul | = 100 // settings are active only when pool is full
renoveAbandonedTi neout = 120
renpveAbandoned = true
/1 use JMX consol e to change this setting at runtine
| ogAbandoned = false // causes stacktrace recordi ng overhead, use only for debugging
/1 JDBC driver properties
Il Mysqgl as exanple
dbProperties {
/'l Mysqgl specific driver properties
/1 http://dev.nysqgl.conm doc/connector-j/en/connector-j-reference-configuration-properties.htmn
/1 let Tontat JDBC Pool handl e reconnecting
aut oReconnect =f al se
/1 truncation behaviour
j dbcConpl i ant Truncati on=f al se

/'l mysqgl O-date conversion

zer oDat eTi meBehavi or =' convert ToNul |

/1 Tontat JDBC Pool's StatementCache is used instead, so disable nysqgl driver's cache
cachePrepSt nt s=f al se

cacheCal | abl eSt nt s=f al se

/1 Tontat JDBC Pool's StatementFinalizer keeps track

dont TrackOpenResour ces=tr ue

/1 performance optim zation: reduce nunber of SQLExceptions thrown in nysql driver code
hol dResul t sOpenOver St at enent Cl ose=t r ue

/1 enable MySQL query cache - using server prep stms will disable query caching
useServer PrepSt nt s=f al se

/'l metadata caching

cacheServer Confi guration=true

cacheResul t Set Met adat a=t r ue

nmet adat aCacheSi ze=100

/1 timeouts for TCP/IP

connect Ti meout =15000

socket Ti neout =120000

/1 timer tuning (disable)

mai nt ai nTi meSt at s=f al se

enabl eQuer yTi neout s=f al se

/1 msc tuning

noDat eti meSt ri ngSync=true

}

Moreon dbCreate

Hibernate can automatically create the database tables required for your domain model. Y ou
have some control over when and how it does this through the dbcr eat e property, which can
take these values:

® create - Drops the existing schema and creates the schema on startup, dropping existing
tables, indexes, etc. first.

® create-drop - Same as create, but also drops the tables when the application shuts down
cleanly.

® update - Creates missing tables and indexes, and updates the current schema without
dropping any tables or data. Note that this can’t properly handle many schema changeslike
column renames (you’ re left with the old column containing the existing data).

¢ validate - Makes no changes to your database. Compares the configuration with the existing
database schema and reports warnings.

® any other value - does nothing

Setting the dvar eat e Setting to "none” is recommended once your schemais relatively stable
and definitely when your application and database are deployed in production. Database
changes are then managed through proper migrations, either with SQL scripts or amigration
tool like Flyway or Liguibase. The Database Migration plugin uses Liquibase.

4.4.1 DataSour ces and Environments

The previous example configuration assumes you want the same config for all
environments: production, test, development etc.

Grails DataSource definition is "environment aware”, however, so you can do:

dat aSour ce {
pool ed = true
driverd assName = "com nysql . jdbc. Driver”
di al ect = org. hi bernate. dial ect. MySQL5I nnoDBDi al ect
/| other common settings here

}

environnents {
production {

https://flywaydb.org/
http://www.liquibase.org/
http://plugins.grails.org/plugin/grails/database-migration

dat aSour ce {
url = "jdbc:nysql://liveip.comliveDb"
/1 other environnent-specific settings here

}
}
}

4.4.2 Automatic Database Migration

The dbar eat e property of the pat asour ce definition isimportant as it dictates what Grails
should do at runtime with regards to automatically generating the database tables from
GORM classes. The options are described in the DataSource section:

[]
create
create-drop
updat e
val i date
®* novaue
In development mode dba eat e 1S by default set to "create-drop”, but at some point in
development (and certainly once you go to production) you’ Il need to stop dropping and
re-creating the database every time you start up your server.
It's tempting to switch to updat e SO YOU retain existing data and only update the schema when
your code changes, but Hibernate’ s update support is very conservative. It won't make any
changes that could result in data loss, and doesn’t detect renamed columns or tables, so
you' |l be left with the old one and will also have the new one.

Grails supports migrations with Liquibase or Flyway via plugins.

¢ Database Migration

* Flyway

4.4.3 Transaction-awar e DataSour ce Proxy

The actual dat asour ce bean is wrapped in a transaction-aware proxy so you will be given the
connection that’s being used by the current transaction or Hibernate sessi on if oneis active.

If this were not the case, then retrieving a connection from the dat asour ce Would be a new
connection, and you wouldn’t be able to see changes that haven't been committed yet
(assuming you have a sensible transaction isolation setting, e.g. reab_cow TTeED OF better).

4.4.4 Database Console

The H2 database console is a convenient feature of H2 that provides a web-based interface
to any database that you have a JDBC driver for, and it’s very useful to view the database
you're developing against. It’s especially useful when running against an in-memory
database.

Y ou can access the console by navigating to http://localhost:8080/h2-console in a browser.

http://plugins.grails.org/plugin/grails/database-migration
http://plugins.grails.org/plugin/saw303/org.grails.plugins%3Agrails-flyway
http://h2database.com/html/quickstart.html#h2_console
http://localhost:8080/h2-console

See the Spring Boot H2 Console Documentation for more information on the options
available.

The H2 console is disabled by default (unless you are using Spring Boot’ s devel oper tools)
and must be enabled by configuring the spri ng. h2. consol e. enabl ed property with avalue of

true.

The H2 console is only intended for use during development so care should be taken to
ensure that spring. h2. consol e. enabl ed isnotsettotrue in production.

4.4.5 M ultiple Datasour ces

By default all domain classes share a single pat asour ce @and a single database, but you have
the option to partition your domain classes into two or more data sources.

Configuring Additional DataSour ces

The default pat asour ce Configuration in grail s-app/ conf/application.ym looks somethlng like
this:

dat aSour ce:
pool ed: true
j mxExport: true
driverd assNanme: org.h2. Driver
usernanme: sa
passwor d:

envi ronnents:
devel opnent :
dat aSour ce:
dbCreate: create-drop
url: jdbc: h2: nem devDb; MWCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON_EXI T=FALSE
test:
dat aSour ce:
dbCreate: update
url: jdbc:h2: memtest Db; MCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON_EXI T=FALSE
producti on:
dat aSour ce:
dbCreate: update
url: jdbc: h2: prodDb; MCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON_EXI T=FALSE
properties:
j mxEnabl ed: true
initial Size: 5

This configures a single pat asour ce With the Spring bean named dat asour ce. TO configure extra
data sources, add a dat asour ces block (at the top level, in an environment block, or both, just
like the standard pat asour ce definition) with a custom name. For example, this configuration
adds a second pat asour ce, Using MySQL in the devel opment environment and Oraclein
production:

dat aSour ce:
pool ed: true
j mExport: true
driverd assNanme: org. h2.Driver
username: sa
passwor d:

dat aSour ces:
| ookup:
di al ect: org. hibernate. dial ect. MySQLI nnoDBDi al ect
driverd assName: com nysql . jdbc. Driver
user nanme: | ookup
password: secret
url: jdbc:nysql://Ilocal host/| ookup
dbCreate: update

envi ronnents:
devel opnent :
dat aSour ce:
dbCreate: create-drop
url: jdbc:h2: mem devDb; MWCC=TRUE; LOCK_TI MEQUT=10000; DB_CLOSE_ON_EXI T=FALSE
test:
dat aSour ce:
dbCreate: update
url: jdbc:h2: memtest Db; WCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON_EXI T=FALSE
producti on:

https://docs.spring.io/spring-boot/docs/2.7.16/reference/htmlsingle/#data.sql.h2-web-console

dat aSour ce:
dbCreate: update
url: jdbc: h2: prodDb; MCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON_EXI T=FALSE
properties:
j mxEnabl ed: true
initial Size: 5
dat aSour ces:
| ookup:
di al ect: org. hibernate.dial ect. Oracl el0gDi al ect
driverd assNanme: oracle.jdbc.driver.OacleDriver
user name: | ookup
password: secret
url: jdbc:oracle:thin: @ocal host: 1521: 1 ookup
dbCreate: update

Y ou can use the same or different databases as long as they’ re supported by Hibernate.

If you need to inject the 1 ookup datasource in a Grails artefact, you can do it like this:
Dat aSour ce dat aSour ce_| ookup

While defining multiple data sources, one of them must be named "dataSource”. Thisis
required because Grails determines which data source is the default by determining which
one is named "dataSource".

Configuring Domain Classes

If adomain class has No pat asour ce cOnfiguration, it defaults to the standard ' dat asour ce' . Set
the dat asour ce property in the mappi ng block to configure a non-default pat asour ce. FOr example,
if you want to use the zi pcode domain to use the ' 1 ookup' Dat asour ce, cOnfigure it like this:

cl ass Zi pCode {
String code

static mapping = {
dat asource ' | ookup'
}

}

A domain class can also use two or more data sources. Use the dat asour ces property with a
list of names to configure more than one, for example:

cl ass Zi pCode {
String code

static mapping = {
dat asources([' 1 ookup', "auditing'])
}

}

If adomain class uses the default pat asour ce @and one or more others, use the special name
perauLT to indicate the default pat asour ce:

cl ass Zi pCode {
String code

static mapping = {
dat asources([' | ookup', 'DEFAULT'])
}

}

If adomain class uses all configured data sources, use the special value: aLL :

cl ass Zi pCode {
String code

static mapping = {
dat asource ' ALL'
}

}

Namespaces and GORM Methods

If adomain class uses more than one pat asour ce then you can use the namespace implied by
each pat asour ce NaMe to make GORM calls for a particular pat asour ce. FOr example, consider
this class which uses two data sources:

cl ass Zi pCode {
String code

static mapping = {
dat asources([' 1 ookup', "auditing'])
}

}

The first pat asour ce Specified is the default when not using an explicit namespace, so in this
case we default to ' 1 ookup' . But you can call GORM methods on the 'auditing’ pat asour ce With
the pat asour ce NAMe, for example:

def zi pCode = Zi pCode. audi ti ng. get (42)

2| bOode. audi ting. save()

Asyou can see, you add the pat asour ce t0 the method call in both the static case and the
instance case.

Hibernate Mapped Domain Classes

Y ou can also partition annotated Java classes into separate datasources. Classes using the
default datasource are registered in grai I s- app/ conf / hi bernate. ¢f g. xn . TO Specify that an
annotated class uses a non-default datasource, create a i bernate. cfg. xni file for that
datasource with the file name prefixed with the datasource name.

For example if the sook Classisin the default datasource, you would register that in
grai | s-app/ conf/ hi bernate. cfg. xm .

<?xm version='"1.0" encodi ng=' UTF-8' ?>
<! DOCTYPE hi ber nat e-confi gurati on PUBLIC
' -/ / Hi bernat e/ H bernate Configuration DID 3.0//EN
"http://hibernate. sourceforge. net/ hi bernate-configuration-3.0.dtd" >
<hi ber nat e- confi gurati on>
<sessi on-factory>
<mappi ng cl ass=' or g. exanpl e. Book' / >
</ session-factory>
</ hi ber nat e- confi gurati on>

and if theibrary classisin the "ds2" datasource, you would register that in
grail s-app/ conf/ds2_hibernate. cfg.xn .

<?xm version="1.0" encodi ng=' UTF-8' ?>
<! DOCTYPE hi ber nat e- confi gurati on PUBLIC
'-// Hi bernate/ H bernate Configuration DID 3.0//EN
"http://hibernate. sourceforge. net/hi bernate-configuration-3.0.dtd" >
<hi ber nat e- confi gurati on>
<sessi on-factory>
<mappi ng cl ass='org. exanpl e. Li brary'/>
</ session-factory>
</ hi ber nat e- confi guration>

The process is the same for classes mapped with hbm.xml files - just list them in the
appropriate hibernate.cfg.xml file.

Services
Like Domain classes, by default Services use the default pat asour ce and

Pl at f or nifr ansact i onManager . 10 configure a Service to use a different pat asour ce, USe the static
dat asour ce property, for example:

cl ass DataService {
static datasource = 'l ookup'
void someMet hod(...) {

}
}

A transactional service can only use a single pat asour ce, SO be sure to only make changes for
domain classes whose pat asour ce 1S the same as the Service.

Note that the datasource specified in a service has no bearing on which datasources are used
for domain classes; that’s determined by their declared datasources in the domain classes
themselves. It’s used to declare which transaction manager to use.

If you have aroo domain class in dat asour ce1 and asar domain ¢lass in dat asour ce2, if

WahooSer vi ce USES dat asSour ce1, & SErvice method that saves anew roo and anew sar will only be
transactional for roo Since they share the same datasource. The transaction won't affect the
ar instance. If you want both to be transactional you’ d need to use two services and XA
datasources for two-phase commit, e.g. with the Atomikos plugin.

Transactions acr oss multiple data sour ces
Grails does not by default try to handle transactions that span multiple data sources.

Y ou can enable Grails to use the Best Effort 1PC pattern for handling transactions across
multiple datasources. To do so you must set the
grails.transaction. chai nedTransact i onManager Post Pr ocessor . enabl ed SEttl Ngtotrue iN appl i cation. yni

grails:
transaction:
chai nedTr ansact i onManager Post Processor:
enabl ed: true

The Best Efforts 1PC pattern is fairly general but can fail in some circumstances that the
developer must be aware of .

Thisisanon-XA pattern that involves a synchronized single-phase commit of a number of
resources. Because the 2PC is not used, it can never be as safe as an XA transaction, but is
often good enough if the participants are aware of the compromises.

The basic ideaisto delay the commit of all resources as late as possible in a transaction so
that the only thing that can go wrong is an infrastructure failure (not a business-processing
error). Systems that rely on Best Efforts 1PC reason that infrastructure failures are rare
enough that they can afford to take the risk in return for higher throughput. If
business-processing services are aso designed to be idempotent, then little can go wrong in
practice.

The BE1PC implementation was added in Grails 2.3.6. . Before this change additional
datasources didn’t take part in transactions initiated in Grails. The transactions in additional
datasources were basically in auto commit mode. In some cases this might be the wanted
behavior. One reason might be performance: on the start of each new transaction, the
BE1PC transaction manager creates a new transaction to each datasource. It’s possible to
leave an additional datasource out of the BE1PC transaction manager by setting transact i onal
= fal se iN the respective configuration block of the additional dataSource. Datasources with
readonly = true Will 8lS0 beleft out of the chained transaction manager (since 2.3.7).

By default, the BE1PC implementation will add all beans implementing the Spring
Pl at f or nifr ansact i onMvanager INterface to the chained BE1PC transaction manager. For example,
apossible anvstr ansact i onvanager bean in the Grails application context would be added to the

https://www.javaworld.com/article/2077963/open-source-tools/distributed-transactions-in-spring-with-and-without-xa.html
https://docs.spring.io/spring/docs/5.3.30/javadoc-api//org/springframework/transaction/PlatformTransactionManager.html
https://docs.spring.io/spring/docs/5.3.30/javadoc-api//org/springframework/jms/connection/JmsTransactionManager.html

Grails BE1PC transaction manager’s chain of transaction managers.

Y ou can exclude transaction manager beans from the BE1PC implementation with this
configuration option:

grails:
transaction:
chai nedTr ansact i onManager Post Processor :
enabl ed: true
bl acklistPattern: '.*'

The exclude matching is done on the name of the transaction manager bean. The transaction
managers of datasources with transactional = fal se Of readoniy = true Will be skipped and
using this configuration option is not required in that case.

XA and Two-phase Commit

When the Best Efforts 1PC pattern isn’t suitable for handling transactions across multiple
transactional resources (not only datasources), there are several options available for adding
XA/2PC support to Grails applications.

The Spring transactions documentation contains information about integrating the JTA/XA
transaction manager of different application servers. In this case, you can configure a bean
with the nametransacti onManager manually iN resources. groovy OI resources. xn file.

4.5 Versioning

Detecting Versions at Runtime

Y ou can detect the application version using Grails support for application metadata using
the GrailsApplication class. For example within controllers there is an implicit
grailsApplication variable that can be used:

def version = grail sApplication. netadata. get Appli cationVersion()
Y ou can retrieve the version of Grailsthat is running with:

def grailsVersion = grail sApplication. metadata. getGail sVersion()

ortheaaiisuil class

import grails.util.GailsUWil

def grailsVersion = GrailsUtil.grailsVersion

4.6 Dependency Resolution

Dependency resolution is handled by the Gradle build tool, all dependencies are defined in
the bui 1 d. gradi e file. Refer to the Gradle user guide for more information.

5TheCommand Line

The Grails New Command-Line Interface (CLI) has undergone significant changes
compared to its previous versions, primarily focusing on code generation. One notable

https://docs.spring.io/spring/docs/5.3.30//transaction.html#transaction-application-server-integration
http://docs.grails.org/6.1.2/api/grails/core/GrailsApplication.html
http://gradle.org

ateration isthe removal of APIsfor invoking Gradle for tasks related to building using
Gradle Tooling APIs. This shift in responsibility aligns with the framework’ s evolution and
itsintegration with the Gradle build system.

Accessing the GrailsCL I

The Grails CLI (Command Line Interface) can be swiftly and effortlessly accessed by
simply typing the following command into your terminal or command prompt:

grails

This command allows developers to quickly initiate the Grails CLI and begin working with
the framework, making it an easy entry point for those looking to start their Grails projects.

The New Grails CLI! isthe preferred method for initiating new Grails projects. This
command-line interface offers various options for creating projects, enabling you to select
your preferred build tools, test frameworks, GORM implementation, and more.
Additionally, the CL1 provides commands for generating essential components like
controllers and domain classes.

The Grails Forge Website

Y ou can also begin your Grails application without the need to install the Grails CLI by
visiting the Grails Forge website. This web-based platform allows you to initiate Grails
projects conveniently, bypassing the installation of the CLI.

Under standing the New Grails Command-line I nterface (CLI)

Once the Grails CLI has been successfully installed, you can activate it using the "grails’
command. For example:

grails create-app nyapp

A Grailsframework CLI project is recognizable by the presence of the "grails-cli.yml" file,
which is automatically generated at the project’ sroot if it was created using the CLI. This
file contains information about the project’ s profile, default package, and other variables.

Hereis an example of a"grails-cli.yml" configuration for a default Grails web application:

applicationType: web
def aul t Package: com exanpl e
t est Framewor k: spock
sour ceLanguage: groovy
bui | dTool : gradle
gorm npl : gorm hi ber nat e5
servletlnpl: spring-boot-starter-tontat
features:
- app-nane
- asset-pipeline-grails
- base
- geb
- gorm hi bernateb
- gradle
- grails-application
- grails-console
- grail s-dependencies
- grails-gormtesting-support
- grails-gradle-plugin
- grails-gsp
- grails-url-mappi ngs
- grails-web
- grails-web-testing-support
- h2
- | ogback
- mcronaut-inject-groovy
- readne
- scaffolding
- spock
- spring-boot - aut oconfi gure

https://start.grails.org/

- spring-boot-starter
- spring-boot-starter-toncat
- yani

This"grails-cli.yml" configuration sets the default values for various aspects of the Grails
web application, including the application type, default package, test framework, source
language, build tool, GORM implementation, servlet implementation, and alist of enabled
features.

Grails Default Package Configuration

The project’ s default package is determined based on the project’ s name. For instance,
running the following command:

grails create-app nyapp
Will set the default package to nyapp.

If you wish to specify your own default package when creating the application, you can do
so by prefixing the application name with the package like this:

grails create-app com exanpl e. nyapp

In this case, "com.example" becomes the default package for your project.

Gradle Build Tool

Grails now utilizes the Gradle Build System for project management. The project’s build
configuration is specified in the bui 1 d. gradi e file, where you define critical aspects of your
project such asits version, required dependencies, and the repositories from which these

dependencies should be sourced. Here's an example of how thisis done:

pl ugi ns {
id "org.grails.grails-web' version 'x.y.z' // Gails plugin
}

repositories {
mavenCentral ()
}

dependenci es {
i mpl ementation 'org. springframework. boot: spring-boot-starter’
impl ementation 'org.grails:grails-core
/1 Add nore dependenci es as needed. .

}

grails {
pat hi ngJar = true
}

Utilizing Gradle Build Tool

To interact with your Grails project and perform various tasks related to building and
running it, you should employ Gradle commands. Here are afew examples:

® Building the Grails application:
gradle build

® Running the Grails application:

gradl e boot Run

® Ligting available Gradle tasks:

gradl e tasks

By invoking these Gradle commands, you can effectively manage your Grails application’s
lifecycle.

It isimportant to remember that Grails leverages the power of Gradle for streamlined project
management, including build automation and dependency resolution. This approach allows
for greater flexibility and control over your Grails projects.

5.1 Interactive Mode

When you execute the grai 1 s command without any arguments, the Grails Command Line
Interface (CLI) enters interactive mode. In this mode, it functions like a shell, allowing you
to run multiple CLI commands without the need to re-initialize the CLI runtime. This mode
is particularly useful when working with code-generation commands (such as

create-control I er), Creating multiple projects, or exploring various CL 1 features.

One of the advantages of interactive mode is the availability of tab-completion. Y ou can
simply pressthe TAB key to view possible options for a given command or flag. Here'san
example of the available optionsin interactive mode:

grail s>
--help --verbose -V -V create-app
--stacktrace --version -h - X create-controller

Help and Infor mation

Y ou can access general usage information for Grails commands using the help flag
associated with a specific command.

grails> create-app -h
Usage: grails create-app [-hivVx] [--list-features] [-g=CGORM | nplenentation] [--jdk=<javaVersion>]
[-s=Servlet Inmplenmentation] [-t=TEST] [-f=FEATURE[, FEATURE...]]... [NAME]
Creates an application
[NAMVE] The nanme of the application to create.
-f, --features=FEATURE[, FEATURE. . .]
The features to use. Possible values: h2, scaffolding, gormhibernate5,
spring-boot-starter-jetty, springloaded, spring-boot-starter-tontat,
m cronaut-http-client, cache-ehcache, hibernate-validator, postgres,
nysql, cache, database-migration, grails-gsp, hantrest, gorm nongodb,
assertj, nockito, spring-boot-starter-undertow, m cronaut-inject-groovy,
gi t hub-wor kfl owjava-ci, jrebel, testcontainers, sqlserver,
grail s-consol e, views-markup, asset-pipeline-grails, views-json,
gormneo4j, asciidoctor, enbedded-nongodb, grails-web-console,
| ogbackGroovy, npbngo-sync, shade, geb, properties
-g, --gorm=GORM I npl ement ati on
Wi ch GORM | npl enentation to configure. Possible values: hibernate,
nongodb, neo4j.

-h, --help Show t his hel p nessage and exit.
-i, --inplace Create a service using the current directory
--jdk, --java-version=<javaVersion>

The JDK version the project should target
--list-features Qut put the available features and their descriptions
-s, --servlet=Servlet |nplenmentation
Wi ch Servlet Inplenentation to configure. Possible values: none, tontat,
jetty, undertow.

-t, --test=TEST Wi ch test franework to use. Possible values: junit, spock.
-V, --verbose Create verbose out put.

-V, --version Print version information and exit.

-X, --stacktrace Show full stack trace when exceptions occur.

Y ou can also obtain alist of available features by using the --list-features flag with any of
the create commands.

grails> create-app --list-features

Avai |l abl e Features

(+) denotes the feature is included by default
Nane Description

Cl/CD
gi t hub-wor kf |l owj ava-ci [PREVI EW Adds a Gthub Actions Wrkflow to Build and Test Grails Application

Cache

creat
creat

cache The Grails Cache plugin provides powerful and easy to use caching functionali

cache- ehcache

dient
m cronaut - http-client

Configuration
properties

Dat abase

dat abase- i gration
enbedded- nongodb
gor m hi bernate5 (+)
gor m nongodb

gor m neo4;j

h2 (+)

nongo- sync

nysql

postgres

sql server
testcontainers

Devel opment Tool s
assertj

hantr est

j rebel
spri ngl oaded

Docunent ati on
asci i doct or

Loggi ng
| ogbackG oovy

Managenent
grail s-web-consol e

Q her

geb (+)

grails-console (+)

m cronaut -i nj ect-groovy (+)
scaffolding (+)

Packagi ng
shade

Server
spring-boot-starter-jetty
spring-boot-starter-toncat (+)
spring- boot -starter-undertow

Val i dati on
hi ber nat e- val i dat or
nocki to

Vi ew Renderi ng
asset-pipeline-grails (+)
grails-gsp (+)

Vi ews-j son

vi ews- mar kup

The Grails Cache Ehcache plugin extends the Cache plugin and uses Ehcache as

Adds support for the Mcronaut HTTP client

Creates a properties configuration file

Adds support for Liquibase database migrations. The Database Mgration plugin
Execut es an enbedded nongo database for integration or functional testing
Adds support for Hibernate5 using GORM

Configures GORM for MngoDB for G oovy applications

Configures GORM for Neo4j for Groovy applications

Adds the H2 driver and default config

Adds support for the MongoDB Synchronous Driver

Adds the MySQL driver and default config

Adds the PostgresSQ. driver and default config

Adds the SQL Server driver and default config

Use Testcontainers to run a database or other software in a Docker container

AssertJ fluent assertions framework

Hantrest matchers for JUnit

Adds support for class reloading with JRebel (requires separate JRebel instal
Adds support for class reloading with Spring Loaded

Adds support for creating Asciidoctor docunentation

G ves you the ability to use groovy to configure |ogback instead of XM.

A web-based Groovy console for interactive runtinme applicati on nanagenent and

This plugins configure Geb for Gails framework to wite autonation tests.
Starts the Grails console, which is an extended version of the regular G oovy
m cronaut - i nj ect - gr oovy

The Grails® framework Scaffol ding plugin replicates much of the functionality

Adds the ability to build a Fat/Shaded JAR

spring-boot-starter-jetty
spring-boot-starter-toncat
spring-boot -starter-undertow

Adds support for the Hi bernate Validator
Mockito test nmocking framework for JUnit

The Asset-Pipeline is a plugin used for managi ng and processing static assets
grails-gsp

JSON views are witten in Goovy, end with the file extension gson and reside
Markup views are witten in Goovy, end with the file extension gm and resid

5.2 Creating Custom Commands

In Grails, a custom command is a piece of functionality that you can add to your Grails
application and execute via the command-line interface (CL1). These commands are not part
of the core Grails framework but are extensions you can create to perform specific tasks or
operations that are unique to your application’ s requirements. Custom commands are a
powerful way to automate various tasks, interact with your application, and perform
administrative functions from the command line. When you run custom commands, they
cause the Grails environment to start, giving you full access to the application context and
the runtime, allowing you to work with the application’ s resources, services, and
configuration as needed within your custom command.

There are several reasons why you might want to write a custom command for your Grails
application:

® Automating Tasks. Custom commands allow you to automate routine tasks, such as data
migration, database updates, or batch processing, by encapsulating the logic in acommand
that can be executed on-demand.

® Administrative Operations: Y ou can use custom commands for administrative tasks like user
management, system maintenance, and configuration management, making it easier to
manage your application in different environments.

® Integration: Custom commands can be used to integrate your Grails application with other
systems or services. For example, you can create a command to synchronize datawith an
external API.

® Customized Workflows: If your application has unique workflows or processes, custom
commands provide away to execute these workflows from the command line.

In Grails, you can create custom commands by implementing the
GrailsApplicationCommand trait. By default, thistrait requires your command to implement
the handle() method as following:

bool ean handl e()

Commands defined this way still have access to the execution context viaavariable called
"executionContext."

Here' s a step-by-step guide on how to create custom commands using the
GrailsApplicationCommand trait with examples, and how to run these commands.

In Grails, you can create custom commands by implementing the & ai | sApp! i cat i oncommand
trait. Custom commands allow you to add functionality to your Grails application that can
be executed via the command-line interface (CLI). Here' s a step-by-step guide on how to
create custom commands using the & ai 1 sappl i cati oncormand trait with examples, and how to
run these commands.

Step 1: Create a Custom Command

To create a custom command, you need to create a Groovy class that implements the
Grai | sAppl i cati oncommand trait. Thistrait provides methods for command execution. Let’s
create a simple example command that greets the user:

/1 grails-app/ commands/ coni exanpl e/ G eet Comrand. gr oovy
package com exanpl e

inport grails.cli.GailsApplicationCommand
class Geet Command inplenents Gail sApplicationCommand {

String get Name() {
return "greet"
}

String getDescription() {
return "Greet the user”
}

bool ean handl e() {
printin("Hello, user!")
return true // Return true to indicate successful execution

}
}

In this example, we' ve created a a eet command €lass that implements the

Grai | sAppl i cati onCommand trait. It provides a get Name() Method to define the command name, a
get Descri ption() Method for abrief description, and the run() method to specify the code to
execute when the command is run.

Step 2: Build Your Grails Application

https://docs.grails.org/latest/api/grails/dev/commands/GrailsApplicationCommand.html

Before you can use the runCommand task, ensure you have built your Grails application
using the following command:

./ gradl ew assenbl e

This command will compile your application and make it ready for running custom
commands.

Step 3: Run the Custom Command

To run the custom command, use Gradle' s runCommand task. Open your terminal and
navigate to your Grails application’ s root directory. Then, run the custom command with the
following Gradle command:

./ gradl ew runCommand - Pargs="greet"

In the command above, replace "greet" with the name of your custom command. This will
execute the GreetCommand, and you will see the output.

Here' s the expected final output when you run the greet command:

Hel | o, user!
Additional Features: Command Arguments and Options

Grails also supports command-line arguments and options for custom commands. Y ou can
define these in your command class by implementing the a ai 1 sappl i cat i oncommand interface.
Here's an example of acommand that takes a name as an argument and an optiona - -1 oud
option to make the greeting louder:

/1 grails-app/ conmands/ conl exanpl e/ G eet Conmrand. gr oovy
package com exanpl e

inmport grails.cli.GailsApplicationComrand

class G eet Command i npl ements Grail sApplicationComand {

String get Name() {
return "greet”
}

String getDescription() {
return "Greet the user with options"
}

bool ean handl e() {
def args = commandLi ne. ar gs
String name = args.size() >0 ? args[0] : "user"
bool ean I oud = args. contains("--1oud")
if (loud) {
println("HELLO, $nane! (LOUD)")

} else {
println("Hello, $nane!")

return true

}

Now you can run the greet command with arguments and options:

Greet the user with the default nmessage
./ gradl ew runConmand - Pargs="greet"

Greet a specific user
./ gradl ew runConmand - Pargs="greet Alice"

Greet |loudly
./ gradl ew runConmand - Pargs="greet --Iloud"

Greet a specific user loudly
./ gradl ew runConmand - Pargs="greet Alice --1Ioud"

This allows you to create more versatile and interactive custom commands for your Grails
application.

In summary, creating custom commands in Grails using the & ai 1 sAppl i cat i oncommand trait isa
powerful way to extend your application’s functionality beyond the web interface. Y ou can
define the command’ s name, description, and logic, and then execute it from the command
line, optionally passing arguments and options as needed.

Using the executi oncontext in the Grails Custom Commands

In Grails, the executionContext is a runtime context object that provides valuable
information about the current execution environment of a Grails application. It includes
details such as the application’s environment (e.g., development, production, test) and
allows devel opers to access this context within custom commands.

Custom commands in Grails can use the executionContext to make informed decisions and
perform specific tasks based on the current runtime environment. For example, developers
can write conditional logic in custom commands that execute differently in production,
development, or testing environments. This flexibility enables custom commands to adapt
and behave differently depending on the context in which they are run, making them
versatile tools for managing and extending Grails applications.

Suppose you have a Grails application that manages customer data, and you want to create a
custom command to perform data backup. In this scenario, you may want the backup
process to behave differently depending on whether you're running it in a devel opment,
staging, or production environment.

Here' s an example of how you can create a custom command that uses the executionContext
to determine the backup behavior:

/'l grails-app/ conmands/ conl exanpl e/ BackupConmand. gr oovy
package com exanpl e

inport grails.cli.GailsApplicati onConmand
cl ass BackupCommand i npl ements Grail sApplicationComand {

String get Name() {
return "backup"
}

String getDescription() {
return "Backup custoner data"
}

bool ean handl e() {
/1 Access the executionContext to determine the environnent
def environnment = executionContext.environment

if (environment == "production") {
/1 Performa full backup in the production environnent
println("Performng a full backup of customer data (Production)")
/1 Add production-specific backup |ogic here

} else {
/1 Performa partial backup in other environnents
printIn("Performing a partial backup of customer data (Non-production)")
/1 Add non-production backup | ogic here

}

return true // Return true to indicate successful execution

}

In this example:
® The custom command, named sackupcommand, IS created to back up customer data.

® |t checksthe executioncontext t0 determine the current environment.

* |f the environment is"production,” it performs afull backup with production-specific logic.
® |nall other environments, it performs a partial backup with non-production logic.

When you run this custom command using . / gr adi ew r unCommand - Par gs="backup" , it Will adapt
its behavior based on whether you' re in a production or non-production environment,
demonstrating how the executi oncont ext can be used to make environment-specific decisions
inarealistic scenario.

How to Create a Custom Command from a Grails Plugin

Y ou can create custom commands not only within your Grails application but also from a
Grails plugin. Here' s how to do it:

1. Createa GrailsPlugin: If you don't already have a Grails plugin, you can create one using
Grails plugin generation commands. For example:

grails create-plugin nmy-plugin

2. Definethe Command: Inside your Grails plugin, define the custom command by creating a
Groovy class that implements the a ai 1 sappl i cati oncommand trait or interface, providing the
necessary methods like get Nane() , get Descri ption(), and handl e().

3. Build and Package the Plugin: To publish the plugin, you should use the Gradle
maven-publish plugin. Update your plugin’s build.gradle file to include the following
configuration:

publishing {
publications {
mavenJava(MavenPubl i cation) {
from conponents. java

}

repositories {
maven {
url "file://path/to/your/local/repo"” // Adjust the path accordingly
}
}
}

Then, you can publish the plugin to your local repository:

./ gradl ew publ i shToMavenLocal

4. Add the Plugin as a Dependency: Instead of using the grails install-plugin command, you
should add the plugin as a dependency in your Grails application’s build.gradle file. Include
the following dependency:
depe/n;jenci es {

i npi éﬁent ation 'com exanple:ny-plugin:1.0.0" // Replace with your plugin's group and version

1.
}

Make sure to replace "com.example:my-plugin:1.0.0" with the appropriate group and
version for your plugin

5. Run the Custom Command: Now, you can run the custom command from your Grails
application’s root directory using the Gradle r uncormand task, as previously explained:

./ gradl ew runConmand - Par gs="your - conmand- nane"

Replace " your - comand- name* With the name of the custom command you defined in your
plugin.

By following these steps, you can create and run custom commands from a Grails plugin,
extending the functionality of your Grails application as needed. This approach allows you
to modularize your custom functionality and share it across multiple Grails projects if
necessary.

5.3 Creating a Grails Project

Creating a project is the primary usage of the CLI. The primary command for creating a new
project is create-app, which creates a standard Grails web application that communicates
over HTTP. For other types of application, see the documentation below.

Command Description Options
® -jdk, --java-version

® _g --sarvlet

Createsa ® -g,--gorm
create-gpp / Grailsweb >
create-webapp application ® -t --test

¢ -f, --features

® i, --inplace

® -jdk, --java-version
® -s --serviet

Createsa
create-restapi Grals " g

RES_TAPI ot —test

application

e -f --features

® -, --inplace

® -jdk, --java-version
® -s --sarviet

Cregaltesa e -g,--gorm
create-plugin grual ii

gn o -t —-test
application
e -f, --features
® i, --inplace

* -jdk, --java-version

® _g --servlet

Cre.ateS a [] _g, __gorm
create-web-plugin Grails Web

Plug_in _ ® _t --test
application
* -f, --features
® i, --inplace

| Flag | Description | Example

Thecreate- cOmmand flags

The "create-*" commands are used to produce a fundamenta Grails project, allowing for the
inclusion of optional flags to select additional features, to customize GORM settings, an
embedded servlet, the test framework, and the Java version.

Flag

ik,

Description

The JDK version the project

--java-version should target

-S, --serviet

-g, --gorm

-1, --test

-f, --features

Which Servlet

Implementation to configure.

Possible values: none,
tomcat, jetty, undertow.

Which GORM
Implementation to configure.
Possible values: hibernate,
mongodb, neo4j.

Which test framework to
use. Possible values: junit,
spock.

The features to use. Possible
values: h2, gorm-hibernate5,
spring-boot-starter-jetty,
springloaded,

mi cronaut-http-client,
cache-ehcache,
hibernate-validator, postgres,
mysqgl, cache,
database-migration,
grails-gsp, hamcrest,
gorm-mongodb, assertj,
mockito,

spring-boot-starter-undertow,

mi cronaut-inject-groovy,
github-workflow-java-ci,

Example

-java-version 11

--servl et =tontat

--gorm hi bernate

--test spock

features github-workfl owjava-ci, mcronaut-http-client

jrebel, testcontainers,
sglserver, grails-console,
views-markup, views-json,
gorm-neo4j, asciidoctor,
embedded-mongodb,
grails-web-console,
logbackGroovy,
mongo-sync, shade,
properties

Create a project using the
current directory

--inplace

-1, --inplace

6 Object Relational Mapping (GORM)

Domain classes are core to any business application. They hold state about business
processes and hopefully also implement behavior. They are linked together through
relationships; one-to-one, one-to-many, or many-to-many.

GORM is Grails aobject relational mapping (ORM) implementation. Under the hood it uses
Hibernate (a very popular and flexible open source ORM solution) and thanks to the
dynamic nature of Groovy with its static and dynamic typing, along with the convention of
Grails, thereisfar less configuration involved in creating Grails domain classes.

Y ou can also write Grails domain classes in Java. See the section on Hibernate Integration
for how to write domain classes in Java but still use dynamic persistent methods. Below isa
preview of GORM in action:
def book = Book.findByTitle("Goovy in Action")
book

. addToAut hor s(nane: "Di erk Koeni g")

. addToAut hor s(nane: "CQui | | aume LaFor ge")
. save()

6.1 Quick Start Guide

A domain class can be created with the create-domain-class command:
grails create-donmin-class nyapp. Person

If no package is specified with the create-domain-class script, Grails automatically uses the
application name as the package name.

Thiswill create a class at the location grail s- app/ donmi n/ nyapp/ Per son. gr oovy such as the one
below:

package nyapp

class Person {

If you have the dbar eat e property set to "update”, "create" or "create-drop” on your
DataSource, Grails will automatically generate/modify the database tables for you.

Y ou can customize the class by adding properties:

class Person {
String nane
I nteger age
Date lastVisit

}

Once you have adomain class try and manipulate it with the shell or console by typing:

grails consol e

Thisloads an interactive GUI where you can run Groovy commands with access to the
Spring ApplicationContext, GORM, etc.

6.1.1 Basic CRUD
Try performing some basic CRUD (Create/Read/Update/Delete) operations.
Create

To create adomain class use Map constructor to set its properties and call save:

def p = new Person(nane: "Fred", age: 40, lastVisit: new Date())
p. save()

The save method will persist your class to the database using the underlying Hibernate ORM
layer.

Read

Grails transparently adds an implicit i ¢ property to your domain class which you can use for
retrieval:

def p = Person.get(1)
assert 1 == p.id

This uses the get method that expects a database identifier to read the rerson 0bject back
from the database. Y ou can also load an object in aread-only state by using the read
method:

def p = Person.read(1)

In this case the underlying Hibernate engine will not do any dirty checking and the object
will not be persisted. Note that if you explicitly call the save method then the object is
placed back into a read-write state.

In addition, you can also load a proxy for an instance by using the load method:

def p = Person.|oad(1)

This incurs no database access until a method other than getld() is called. Hibernate then
initializes the proxied instance, or throws an exception if no record is found for the specified
id.

Update

To update an instance, change some properties and then call save again:

def p = Person.get(1)
p. name = "Bob"
p. save()

Delete

To delete an instance use the delete method:

def p = Person.get(1)
p. del ete()

6.2 Further Reading on GORM

For more information on using GORM see the dedicated documentation for the GORM
project.

7 TheWeb Layer

7.1 Controllers

A controller handles requests and creates or prepares the response. A controller can generate
the response directly or delegate to aview. To create a controller, smply create a class
whose name ends with control 1 er INthe graiis-app/controllers directory (in asubdirectory if
it'sin a package).

The default URL Mapping configuration ensures that the first part of your controller nameis
mapped to a URI and each action defined within your controller maps to URIs within the
controller name URI.

7.1.1 Under standing Controllersand Actions

Creating a controller

Controllers can be created with the create-controller or generate-controller command. For
example try running the following command from the root of a Grails project:

grails create-controller book

The command will create a controller at the location
grails-app/control | ers/ myapp/ BookControl | er. groovy.

package nyapp
cl ass BookController {

def index() { }
}

where "myapp" will be the name of your application, the default package name if oneisn’'t
specified.

Bookcont rol I er DYy default maps to the /book URI (relative to your application root).

Thecreate-control I er @Nd generate-control I er COMMands are just for convenience and you
can just as easily create controllers using your favorite text editor or IDE

Creating Actions

https://gorm.grails.org

A controller can have multiple public action methods; each one mapsto a URI:

cl ass BookController {
def list() {

/1 do controller logic
/1 create nodel

return nodel
}
}

This example mapsto the /vook/1i st URI by default thanks to the property being named i st .
The Default Action
A controller has the concept of a default URI that maps to the root URI of the controller, for
example / book fOr Bookcont rol 1er. The action that is called when the default URI is requested
is dictated by the following rules:

* |f thereisonly one action, it’s the default

® |f you have an action named i ndex, it’ s the default

® Alternatively you can set it explicitly with the def aul t Acti on property:

static defaultAction = "list"

7.1.2 Controllersand Scopes

Available Scopes

Scopes are hash-like objects where you can store variables. The following scopes are
available to controllers:

* servletContext - Also known as application scope, this scope lets you share state across the
entire web application. The servletContext is an instance of ServletContext

® session - The session allows associating state with a given user and typically uses cookies to
associate a session with a client. The session object is an instance of HttpSession

® request - The request object alows the storage of objects for the current request only. The
request object is an instance of HttpServletRequest

® params - Mutable map of incoming request query string or POST parameters
® flash - See below
Accessing Scopes

Scopes can be accessed using the variable names above in combination with Groovy’ s array
index operator, even on classes provided by the Servlet API such as the HttpServletRequest:

cl ass BookController {

def find() {
def findBy = parans["findBy"]
def appContext = request["fo00"]
def | oggedUser = session["l|ogged_user"]

}
}

Y ou can a'so access values within scopes using the de-reference operator, making the syntax

https://docs.oracle.com/javaee/7/api/javax/servlet/ServletContext.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpSession.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html

even more clear:

cl ass BookController {
def find() {
def findBy = parans.findBy
def appContext = request.foo
def | oggedUser = session. | ogged_user
}
}

Thisis one of the ways that Grails unifies access to the different scopes.
Using Flash Scope

Grails supports the concept of flash scope as atemporary store to make attributes available
for this request and the next request only. Afterwards the attributes are cleared. Thisis
useful for setting a message directly before redirecting, for example:

def delete() {
def b = Book. get(parans.id)
if (Ib) {
flash. message = "User not found for id ${parans.id}"
redirect(action:list)

. I/ remaining code

}

When the del et e action is requested, the nessage Value will be in scope and can be used to
display an information message. It will be removed from the 1 ash scope after this second
request.

Note that the attribute name can be anything you want, and the values are often strings used
to display messages, but can be any object type.

Scoped Controllers

Newly created applications have the graiis. control I ers. def aul t scope property set to avalue of
"singleton” in application. ym . YOU mMay change this value to any of the supported scopes
listed below. If the property isnot assigned avalue at al, controllers will default to
"prototype” scope.

Supported controller scopes are:

® orototype (default) - A new controller will be created for each request (recommended for
actions as Closure properties)

® session - Onecontroller is created for the scope of auser session

® singleton - Only oneinstance of the controller ever exists (recommended for actions as
methods)

To enable one of the scopes, add a static scope property to your class with one of the valid
scope values listed above, for example

static scope = "singleton"

Y ou can define the default Sirategy in application.ym with the grails.controllers. defaul t Scope
key, for example:

grails:
controllers:
def aul t Scope: singl eton

Use scoped controllers wisely. For instance, we don’t recommend having any propertiesin

a singleton-scoped controller since they will be shared for all requests.

7.1.3 Modelsand Views

Returning the M odel

A model isaMap that the view uses when rendering. The keys within that Map correspond
to variable names accessible by the view. There are a couple of ways to return amodel.
First, you can explicitly return a Map instance:

def show() {
[book: Book. get (parans.id)]
}

The above does not reflect what you should use with the scaffolding views - see the
scaffolding section for more details.

A more advanced approach isto return an instance of the Spring Model AndView class:

i mport org.springfranework. web. servl et. Model AndVi ew

def index() {
/1 get some books just for the index page, perhaps your favorites
def favoriteBooks = ...

/1 forward to the list viewto show them
return new Model AndVi em "/ book/list", [bookList : favoriteBooks])

}

One thing to bear in mind is that certain variable names can not be used in your model:

)
attributes

°
application

Currently, no error will be reported if you do use them, but this will hopefully changein a
future version of Grails.

Selecting the View

In both of the previous two examples there was no code that specified which view to render.
So how does Grails know which one to pick? The answer lies in the conventions. Grails will
look for aview at the location grail s-app/ vi ews/ book/ show. gsp for this show action:

cl ass BookController {
def show() {
[book: Book. get (paramns.id)]
}

}

To render adifferent view, use the render method:

def show() {
def map = [book: Book.get(parans.id)]
render (view "display", nodel: nap)

In this case Grails will attempt to render aview at the location

grai | s-app/ vi ews/ book/ di spl ay. gsp. NOtice that Grails automatically qualifies the view location
with the book directory of the grai i s-app/ vi ews directory. Thisis convenient, but to access
shared views, you use an absolute path instead of arelative one:

def show() {
def map = [book: Book. get (parans.id)]
render (vi ew. "/shared/display", nodel: map)

}

https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/web/servlet/ModelAndView.html

In this case Grails will attempt to render aview at the location
grail s-app/vi ews/ shared/ di spl ay. gsp.

Grails also supports JSPs as views, so if a GSP isn’'t found in the expected location but a JSP
is, it will be used instead.

Unlike GSPs, JSPs must be located in the directory path

/' src/ mai n/ webapp/ VEEB- | NF/ gr ai | s- app/ vi ews.

Additionally, to ensure JSPs work as intended, don’t forget to include the required
dependencies for JSP and JSTL implementations in your bui | d. gradi e file.

Selecting Views For Namespaced Controllers

If acontroller defines a namespace for itself with the namespace property that will affect the
root directory in which Grails will look for views which are specified with arelative path.
The default root directory for views rendered by a namespaced controller is

grail s-app/ vi ews/ <namespace name>/ <control I er name>/ . |f the view isnot found in the namespaced
directory then Grails will fallback to looking for the view in the non-namespaced directory.

See the example below.

cl ass ReportingController {
static nanespace = 'business’

def humanResources() {
/1 This will render grails-app/views/business/reporting/ humanResources. gsp
/1 if it exists.

/1 1f grails-app/views/business/reporting/humanResources. gsp does not
/1 exist the fallback will be grails-app/views/reporting/hunmanResources. gsp.

/1l The namespaced GSP wi || take precedence over the non-namespaced GSP.

[nunber O Enpl oyees: 9]

def accountsReceivable() {
/1 This will render grails-app/views/business/reporting/ nunberCrunch. gsp
/1 if it exists.

/1 |f grails-app/views/business/reporting/ nunberCrunch. gsp does not
/1 exist the fallback will be grails-app/views/reporting/ nunberCrunch. gsp.

/1 The namespaced GSP wi |l take precedence over the non-namespaced GSP.

render view 'nunberCrunch', nodel: [nunber O Enpl oyees: 13]

}
Rendering a Response

Sometimesit’s easier (for example with Ajax applications) to render snippets of text or code
to the response directly from the controller. For this, the highly flexible render method can be
used:

render "Hello World!"

The above code writes the text "Hello World!" to the response. Other examples include:

/1l wite sone markup
render {
for (b in books) {
div(id: b.id, b.title)
}
}

/'l render a specific view
render (view. 'show)

/'l render a tenplate for each itemin a collection
render (tenpl ate: 'book_tenplate', collection: Book.list())

/1 render sone text with encoding and content type
render (text: "<xm >sone xm </ xm >", contentType: "text/xm ", encoding: "UTF-8")

If you plan on using Groovy’ s var kupsui | der t0 generate HTML for use with the r ender
method be careful of naming clashes between HTML elements and Grails tags, for example:

i nport groovy.xnl . Mar kupBui | der

def 1ogin() {
def writer = new StringWiter()
def builder = new MarkupBuil der (writer)
bui I der. htm {

head {
title "Log in'

}

body {
hl ' Hello'
form {

}
}

def html = witer.toString()
render htm
}

Thiswill actually call the form tag (which will return some text that will be ignored by the
Mar kupBui | der). TO correctly output a <t or m» €lement, use the following:

def login() {
...

body {
hl ' Hell o'
bui I der.form {
}

}

11

7.1.4 Redirects and Chaining

Redirects

Actions can be redirected using the redirect controller method:

class OverviewController {

def login() {}

def find() {
if (!session.user)
redirect(action: 'login)
return
}
}

}

Internally the redirect method uses the HttpServletResponse object’ S sendredi rect method.

Theredi rect method expects one of :

® The name of an action (and controller name if the redirect isn’t to an action in the current
controller):

/1 Also redirects to the index action in the hone controller
redirect(controller: 'hone', action: 'index')

* A URI for aresource relative the application context path:

https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletResponse.html

/! Redirect to an explicit UR
redirect(uri: "/login.htm")

® Orafull URL:

/'l Redirect to a URL
redirect(url: "http://grails.org")

® A domain class instance:

/1 Redirect to the domain instance
Book book = ... // obtain a domain instance
redi rect book

In the above example Grails will construct alink using the domain classi ¢ (if present).

Parameters can optionally be passed from one action to the next using the params argument of
the method:

redirect(action: 'nyaction', parans: [nmyparam "nyvalue"])

These parameters are made available through the params dynamic property that accesses
request parameters. If a parameter is specified with the same name as a request parameter,
the request parameter is overridden and the controller parameter is used.

Since the parans Object isaMap, you can use it to pass the current request parameters from
one action to the next:

redirect (action: "next", paranms: parans)

Finally, you can also include afragment in the target URI:

redirect(controller: "test", action: "show', fragnment: "profile")

which will (depending on the URL mappings) redirect to something like
"Imyapp/test/show#profile".

Chaining
Actions can also be chained. Chaining allows the model to be retained from one action to
the next. For example calling therirst action in this action:

cl ass Exanpl eChai nControl ler {

def first() {
chain(action: second, nodel: [one: 1])
}

def second () {
chain(action: third, nodel: [two: 2])
}

def third() {
[three: 3])
}

}

results in the modd!:

[one: 1, two: 2, three: 3]

The model can be accessed in subsequent controller actions in the chain using the chai nwdel
map. This dynamic property only exists in actions following the call to the chai n method:

class ChainController {

def nextlnChain() {
def nodel = chai nvbdel . myModel

}

Liketheredirect method you can also pass parameters to the chai n method:
chain(action: "actionl", nodel: [one: 1], parans: [nyparam "paranl"])

The chain method uses the HTTP session and hence should only be used if your
application is stateful.

7.1.5 Data Binding

Data binding is the act of "binding" incoming request parameters onto the properties of an
object or an entire graph of objects. Data binding should deal with all necessary type
conversion since request parameters, which are typically delivered by aform submission,
are always strings whilst the properties of a Groovy or Java object may well not be.

Map Based Binding

The data binder is capable of converting and assigning valuesin aMap to properties of an
object. The binder will associate entriesin the Map to properties of the object using the keys
in the Map that have values which correspond to property names on the object. The
following code demonstrates the basics:

grails-app/domain/Person.groovy
class Person {
String firstNanme

String | ast Name
I nteger age

def bindingMap = [firstName: 'Peter', lastNane: 'Gabriel', age: 63]

def person = new Person(bi ndi ngvap)

assert person.firstNane == 'Peter'
assert person.|astNane == 'Gabriel’
assert person.age == 63

To update properties of adomain object you may assign a Map to the properties property of
the domain class:
def bindingMap = [firstName: 'Peter', lastNane: 'Gabriel', age: 63]

def person = Person. get (soneld)
person. properties = bindi ngMap

assert person.firstName == 'Peter’
assert person.|lastNane == ' Gabriel’
assert person.age == 63

The binder can populate afull graph of objects using Maps of Maps.

class Person {
String firstNanme
String | ast Nane
I nteger age
Addr ess honeAddr ess

}

class Address {
String county
String country

}

def bindingMap = [firstName: 'Peter', lastNane: 'Gabriel', age: 63, honmeAddress: [county: 'Surrey', country:

def person = new Person(bi ndi nghvap)

assert person.firstName == 'Peter'
assert person.|astNane == 'Gabriel’
assert person.age == 63

' Engl a

assert person. honeAddress. county == ' Surrey'
assert person. honmeAddress. country == 'Engl and'

Binding To Collections And M aps

The data binder can populate and update Collections and Maps. The following code shows a
simple example of populating aList of objectsin adomain class:

class Band {
String name
static hasMany = [al buns: Al buni
Li st al buns

}

class Al bum {

String title

I nt eger nunber O Tr acks
}

def bindingMap = [nane: ' Cenesis',
"al buns[0]': [title: 'Foxtrot', nunber O Tracks: 6],
"albuns[1]': [title: '"Nursery Cryne', nunberOf Tracks: 7]]

def band = new Band(bi ndi ngMap)

assert band.name == ' CGenesis'

assert band. al buns. size() == 2

assert band. al buns[0].title == 'Foxtrot"'
assert band. al buns[0] . nunber O Tracks == 6

assert band. al buns|

:title == 'Nursery Cryne'
assert band. al buns[1] .

1]
1] . nunber & Tracks == 7

That code would work in the same way if ai bunrs Were an array instead of aist .

Note that when binding to a set the structure of the vap being bound to the set isthe same as
that of amp being bound to avist but since aset isunordered, the indexes don’'t necessarily
correspond to the order of elementsin the set. In the code example above, if al burs Were a set
instead of aList, the vi ndi ngvap could look exactly the same but 'Foxtrot' might be the first
abum in the set or it might be the second. When updating existing elementsin a set the map
being assigned to the set must havei ¢ elementsin it which represent the element in the set
being updated, asin the following example:

/

The value of the indexes O and 1 in albuns[0] and al buns[1] are arbitrary

val ues that can be anything as long as they are unique within the Map.

They do not correspond to the order of elements in al bunms because al buns

* is a Set.

*/

def bindingMap = ["al buns[0]': [id: 9, title: 'The Lanb Lies Down On Broadway']
"albuns[1]': [id: 4, title: 'Selling England By The Pound']]

E

def band = Band. get (someBandl d)

/
This will find the Albumin albuns that has an id of 9 and will set its title
to ' The Lanb Lies Down On Broadway' and will find the Albumin al buns that has
an id of 4 and set its title to 'Selling England By The Pound'. In both
cases if the Al bumcannot be found in albuns then the albumwill be retrieved
fromthe database by id, the Albumw || be added to al buns and will be updated
with the values described above. If a Albumw th the specified id cannot be
found in the database, then a binding error will be created and associ ated
with the band object. Mre on binding errors later.

E Y

*

*/
band. properties = bi ndi ngMap

When binding to amp the structure of the binding wvap is the same as the structure of a map
used for binding to aList or aset and the index inside of square brackets corresponds to the
key in the map being bound to. See the following code:

class Al bum {
String title
static hasMany = [pl ayers: Player]
Map pl ayers

class Player {
String name
}

def bindingMap = [title: 'The Lanb Lies Down On Broadway',

"players[guitar]': [nane: 'Steve Hackett'],
'players[vocal s]': [nane: 'Peter Gabriel'],
' pl ayers[keyboards]': [name: 'Tony Banks']]

def al bum = new Al bun{ bi ndi ngMap)

assert albumtitle == 'The Lanb Lies Down On Broadway'
assert al bum pl ayers.size() == 3

assert al bum pl ayers. guitar.nane == ' Steve Hackett'
assert al bum pl ayers.vocal s. nane == ' Peter Gabriel'’
assert al bum pl ayers. keyboards. nane == ' Tony Banks'

When updating an existing wp, if the key specified in the binding mp does not exist in the map
being bound to then a new value will be created and added to the mp with the specified key
asin the following example:

def bindingMap = [title: 'The Lanb Lies Down On Broadway',

"players[guitar]': [name: 'Steve Hackett'],
'players[vocal s]': [nane: 'Peter Gabriel'],
' pl ayers[keyboards]': [nane: 'Tony Banks']]

def al bum = new Al bun{bi ndi nghvap)

assert albumtitle == 'The Lanb Lies Down On Broadway'
assert al bum pl ayers. size() == 3

assert al bum pl ayers. guitar.nane == ' Steve Hackett'
assert al bum pl ayers.vocal s. nane == 'Peter Gabriel'
assert al bum pl ayers. keyboards. name == ' Tony Banks'

def updat edBi ndi ngMap = [' players[drums]': [nanme: 'Phil Collins'],
' pl ayers[keyboards]': [nane: 'Anthony George Banks']]

al bum properti es = updat edBi ndi ngMap

assert albumtitle == 'The Lanb Lies Down On Broadway'

assert al bum pl ayers.size() == 4

assert al bum pl ayers. guitar.nane == ' Steve Hackett'

assert al bum pl ayers.vocal s. nane == ' Peter Gabriel’

assert al bum pl ayers. keyboards. name == ' Ant hony Geor ge Banks'
assert al bum pl ayers. druns. nane == 'Phil Collins'

Binding Request Data to the M odel

The params object that is available in a controller has special behavior that helps convert

dotted request parameter names into nested M aps that the data binder can work with. For

example, if arequest includes request parameters named per son. honeAddr ess. count ry and

per son. honeAddress. city with values 'USA' and 'St. Louis respectively, par ams would include
entries like these:

[person: [honeAddress: [country: 'USA', city: 'St. Louis']]]

There are two ways to bind request parameters onto the properties of adomain class. The
first involves using a domain classes Map constructor:

def save() {
def b = new Book(parans)
b. save()

The data binding happens within the code new sook(par ans) . By passing the params object to
the domain class constructor Grails automatically recognizes that you are trying to bind
from request parameters. So if we had an incoming request like:

/ book/ save?tit| e=The%20St and&aut hor =St ephen%20Ki ng

Thenthetitie and aut hor request parameters would automatically be set on the domain class.
Y ou can use the properties property to perform data binding onto an existing instance:

def save() {
def b = Book. get(parans.id)
b. properties = parans
b. save()

This has the same effect as using the implicit constructor.

When binding an empty String (a String with no charactersin it, not even spaces), the data
binder will convert the empty String to null. This simplifies the most common case where
the intent isto treat an empty form field as having the value null sincethereisn’t away to
actualy submit a null as arequest parameter. When this behavior is not desirable the
application may assign the value directly.

The mass property binding mechanism will by default automatically trim all Strings at
binding time. To disable this behavior set the grai i s. dat abi ndi ng. t ri nst ri ngs property to false
in grail s-app/ conf/application. groovy.

/1 the default value is true

grails.databinding.trinStrings = fal se

...

The mass property binding mechanism will by default automatically convert all empty
Strings to null at binding time. To disable this behavior set the
grail s. dat abi ndi ng. convert Enpt ySt ri ngsToNul | property tofalsein

grail s-app/ conf/application.groovy.

/1 the default value is true
grails. dat abi ndi ng. convert EnptyStringsToNull = fal se

...

The order of eventsis that the String trimming happens and then null conversion happens so
if trinstri ngs iStrue and convert Enpt ySt ri ngsToNul | iSt rue, NOt Only will empty Strings be
converted to null but also blank Strings. A blank String is any String such that the tri)
method returns an empty String.

These forms of data binding in Grails are very convenient, but also indiscriminate. In other
words, they will bind all non-transient, typed instance properties of the target object,
including ones that you may not want bound. Just because the form in your Ul doesn’t
submit al the properties, an attacker can still send malign dataviaaraw HTTP request.
Fortunately, Grails al'so makes it easy to protect against such attacks - see the section titled
"Data Binding and Security concerns' for more information.

Data binding and Single-ended Associations

If you have @ one-t o- one OF many-t o- one @SSOCiation you can use Grails data binding capability
to update these relationships too. For example if you have an incoming request such as:

/ book/ save?aut hor. i d=20

Grailswill automatically detect the .i ¢ suffix on the request parameter and ook up the aut hor
instance for the given id when doing data binding such as:

def b = new Book(paramns)

An association property can be set to nul 1 by passing the literal string "null”. For example:

/ book/ save?aut hor . i d=nul |
Data Binding and M any-ended Associations

If you have a one-to-many or many-to-many association there are different techniques for
data binding depending of the association type.

If you have a set based association (the default for anaswany) then the smplest way to

popul ate an association isto send alist of identifiers. For example consider the usage of
<g: sel ect > below:

<g: sel ect nanme="books"
from="${Book.list()}"
size="5" nultiple="yes" optionKey="id"
val ue="${aut hor ?. books}" />

This produces a select box that lets you select multiple values. In this case if you submit the
form Grails will automatically use the identifiers from the select box to populate the books
association.

However, if you have a scenario where you want to update the properties of the associated
objects the this technique won’t work. Instead you use the subscript operator:

<g: textFi el d nanme="books[O0].title" value="the Stand" />
<g:textFi el d nane="books[1].title" value="the Shining" />

However, with set based association it is critical that you render the mark-up in the same
order that you plan to do the update in. Thisis because a set has no concept of order, so
although we're referring to books[0] and books[1] it IS Not guaranteed that the order of the
association will be correct on the server side unless you apply some explicit sorting yourself.

Thisisnot aproblem if you use i st based associations, since aist has adefined order and
an index you can refer to. Thisis also true of wp based associations.

Note also that if the association you are binding to has a size of two and you refer to an
element that is outside the size of association:

<g: textFi el d name="books[O0].title" value="the Stand" />
<g: textFi el d nanme="books[1].title" value="the Shining" />
<g:textFi el d name="books[2].title" val ue="Red Madder" />

Then Grails will automatically create a new instance for you at the defined position.

Y ou can bind existing instances of the associated typeto avist using the same .id syntax as
you would use with a single-ended association. For example:

<g: sel ect nane="books[0].id" fronm="${bookList}"
val ue="${aut hor ?. books[0] ?.id}" />

<g: sel ect nane="books[1].id" from="${bookList}"
val ue="${aut hor ?. books[1] ?.id}" />

<g: sel ect nane="books[2].id" from="${bookList}"
val ue="${aut hor ?. books[2] ?.id}" />

Would allow individual entriesin the books List t0 be selected separately.

Entries at particular indexes can be removed in the same way too. For example:

<g: sel ect nanme="books[0].id"
frome" ${Book. list()}"
val ue="${aut hor ?. books[0] ?.id}"
noSel ection="["'null': ""]"/>

Will render a select box that will remove the association at booksi 0] if the empty option is
chosen.

Binding to awp property works the same way except that the list index in the parameter
name is replaced by the map key:

<g: sel ect nane="images[cover].id"
from="${I mage.list()}"
val ue="${book?. i mages[cover] ?.id}"
noSel ection="["null': ""]1"/>

Thiswould bind the selected image into the wap property i mages under akey of “cover".

When binding to Maps, Arrays and Collections the data binder will automatically grow the
size of the collections as necessary.

The default limit to how large the binder will grow a collection is 256. If the data binder
encounters an entry that requires the collection be grown beyond that limit, the entry is
ignored. The limit may be configured by assigning avalue to the

grail s. dat abi ndi ng. aut oG owCol | ecti onLi mi t property in appl i cati on. groovy.

grails-app/conf/application.groovy

/1 the default value is 256
grails. dat abi ndi ng. aut oGrowCol | ectionLinmit = 128

...
Data binding with Multiple domain classes
It is possible to bind data to multiple domain objects from the params object.

For example so you have an incoming request to:

/ book/ save?book. titl e=The%20St and&aut hor . nanme=St ephen%20Ki ng

You'll notice the difference with the above request is that each parameter has a prefix such
aSauthor. OF book. Which isused to isolate which parameters belong to which type. Grails
parans Object is like a multi-dimensional hash and you can index into it to isolate only a
subset of the parameters to bind.

def b = new Book(parans. book)

Notice how we use the prefix before the first dot of the book. tit1e parameter to isolate only
parameters below this level to bind. We could do the same with an aut hor domain class:

def a = new Aut hor (parans. aut hor)
Data Binding and Action Arguments

Controller action arguments are subject to request parameter data binding. There are 2
categories of controller action arguments. The first category is command objects. Complex
types are treated as command objects. See the Command Objects section of the user guide
for details. The other category is basic object types. Supported types are the 8 primitives,
their corresponding type wrappers and java.lang.String. The default behavior isto map
request parameters to action arguments by name:

class AccountingController {

/1 account Nunber will be initialized with the value of parans. account Nunber
/1 accountType will be initialized with parans.account Type
def displayl nvoi ce(String account Nunber, int accountType) {
...
}

}

For primitive arguments and arguments which are instances of any of the primitive type
wrapper classes atype conversion has to be carried out before the request parameter value
can be bound to the action argument. The type conversion happens automatically. In a case
like the example shown above, the par ams. account Type request parameter has to be converted
toanint. If type conversion fails for any reason, the argument will have its default value per
normal Java behavior (null for type wrapper references, false for booleans and zero for
numbers) and a corresponding error will be added to the errors property of the defining
controller.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/String.html

/accounti ng/ di spl ayl nvoi ce?account Nunber =B59786&account Type=bogusVal ue

Since "bogusValue" cannot be converted to type int, the value of accountType will be zero,
the controller’serrors. hasErrors() will be true, the controller'Serrors. error count Will be equal
to 1 and the controller’Serrors. get Fi el derror (* account Type') Will contain the corresponding
error.

If the argument name does not match the name of the request parameter then the
@rail s. web. Request Paranet er @NNotation may be applied to an argument to express the name of
the request parameter which should be bound to that argument:

import grails.web. Request Par anet er

class AccountingController {
/'l mai nAccount Number will be initialized with the value of parans.account Nunber
/1 accountType will be initialized with parans.account Type

def displ ayl nvoi ce(@Request Par anet er (' account Nunber') String mai nAccount Nunber, int accountType) {
1.
}

}
Data binding and type conversion errors
Sometimes when performing data binding it is not possible to convert a particular String into

aparticular target type. Thisresults in atype conversion error. Grails will retain type
conversion errors inside the errors property of a Grails domain class. For example:

cl ass Book {

URL publ i sher URL
}

Here we have adomain class sook that usesthej ava. net . urL Class to represent URLS. Given
an incoming request such as:

/ book/ save?publ i sher URL=a- bad- ur |

it is not possible to bind the string a- bad-uri t0 the publ i sher URL Property as a type mismatch
error occurs. Y ou can check for these like this:

def b = new Book(parans)

if (b.hasErrors()) {
println "The value ${b.errors.getFi el dError (' publisherURL").rejectedVal ue}" +
" is not a valid URL!'"

}

Although we have not yet covered error codes (for more information see the section on
validation), for type conversion errors you would want a message from the

grai |l s-app/ i 18n/ messages. properties file to use for the error. Y ou can use a generic error
message handler such as:

typeM snat ch. j ava. net. URL=The field {0} is not a valid URL

Or amore specific one:

typeM smat ch. Book. publ i sher URL=The publisher URL you specified is not a valid URL
The BindUsing Annotation

The BindUsing annotation may be used to define a custom binding mechanism for a
particular field in aclass. Any time data binding is being applied to the field the closure
value of the annotation will be invoked with 2 arguments. The first argument is the object
that data binding is being applied to and the second argument is DataBindingSource which
is the data source for the data binding. The value returned from the closure will be bound to

http://docs.grails.org/6.1.2/api/grails/databinding/BindUsing.html
http://docs.grails.org/6.1.2/api/grails/databinding/DataBindingSource.html

the property. The following example would result in the upper case version of the nane value
in the source being applied to the nare field during data binding.

i mport grails. dat abi ndi ng. Bi ndUsi ng

cl ass Sonmed ass {
@i ndUsi ng({obj, source ->

//source is DataSourceBinding which is simlar to a Map
/1 and defines getAt operation but source.nane cannot be used here.
//1n order to get nanme from source use getAt instead as shown bel ow.

source[' nanme'] ?.t oUpper Case()

})

String nane

Note that data binding is only possible when the name of the request parameter matches
with the field name in the class. Here, nane from request parameters matches with name from

Soned ass.

The BindUsing annotation may be used to define a custom binding mechanism for all of the
fields on a particular class. When the annotation is applied to a class, the value assigned to
the annotation should be a class which implements the BindingHel per interface. An instance
of that class will be used any time avalue is bound to a property in the class that this
annotation has been applied to.

@i ndUsi ng(SomeC assWhi chl npl ement sBi ndi ngHel per)
cl ass Soned ass {

String someProperty

I nteger someQ her Property

}

TheBindlnitializer Annotation

The Bindlnitializer annotation may be used to initialize an associated field in aclassif itis
undefined. Unlike the BindUsing annotation, databinding will continue binding all nested
properties on this association.

inport grails.databinding.Bindlnitializer
cl ass Account{}

class User {
Account account

/1 Bindlnitializer expects you to return a instance of the type

/1 where it's declared on. You can use source as a paraneter, in this case user.
@i ndlnitializer({user-> new Contact(account:user.account) })

Cont act contact

cl ass Contact{
Account account
String firstName

@Bindinitializer only makes sense for associated entities, as per this use case.

Custom Data Converters

The binder will do alot of type conversion automatically. Some applications may want to
define their own mechanism for converting values and a simple way to do thisisto write a
class which implements ValueConverter and register an instance of that classasabeanin
the Spring application context.

package com nyapp.converters

inport grails.databinding. converters. Val ueConverter

/**
* A custom converter which will convert String of the
* form'city:state' into an Address object.
*
/
cl ass AddressVal ueConverter inplenments Val ueConverter {

http://docs.grails.org/6.1.2/api/grails/databinding/BindUsing.html
http://docs.grails.org/6.1.2/api/grails/databinding/BindingHelper.html
http://docs.grails.org/6.1.2/api/grails/databinding/BindInitializer.html
http://docs.grails.org/6.1.2/api/grails/databinding/BindUsing.html
http://docs.grails.org/6.1.2/api/grails/databinding/converters/ValueConverter.html

bool ean canConvert (val ue) {
val ue instanceof String
}

def convert(val ue) {
def pieces = value.split(':")
new com nyapp. Address(city: pieces[0], state: pieces[1])

Cl ass<?> get Target Type() {
com nyapp. Addr ess
}

}

An instance of that class needsto be registered as a bean in the Spring application context.
The bean name is not important. All beans that implemented V aueConverter will be
automatically plugged in to the data binding process.

grail s-app/conf/spring/resources.groovy

beans = {
addr essConverter com nmyapp. converters. AddressVal ueConvert er
1.

}

class Person {
String firstNanme
Addr ess honeAddr ess

}
class Address {
String city
String state
}
def person = new Person()
person. properties = [firstName: 'Jeff', homeAddress: "O Fallon: M ssouri"]
assert person.firstName == 'Jeff’
assert person. honeAddress.city = "O Fal |l on"
assert person. honeAddress.state = ' M ssouri'

Date Formats For Data Binding

A custom date format may be specified to be used when binding a String to a Date value by
applying the BindingFormat annotation to a Date field.

i mport grails. dat abi ndi ng. Bi ndi ngFor nat
class Person {

@Bi ndi ngFor mat (' Mvddyyyy')

Date birthDate
}

A global setting may be configured in appl i cati on. gr oovy t0 define date formats which will be
used application wide when binding to Date.

grails-app/conf/application.groovy

grails. databi ndi ng. dateFormats = [' MMddyyyy', 'yyyy-Mvdd HH mmss. S, "yyyy-Mvdd' T' hh: mmss' Z' "]

The formats specified in grai 1 s. dat abi ndi ng. dat eFor mat s Will be attempted in the order in which
they areincluded in the List. If aproperty is marked with @i ndi ngror mat , the @i ndi ngFor mat
will take precedence over the values SpeCIfled in grail s. dat abi ndi ng. dat eFor mat s.

The formats configured by default are:

°
yyyy- Mt dd HH. nm ss. S

°
yyyy- M dd’ T' hh: nm ss’ Z'

°
yyyy-Midd HH: mmss. S z

[
yyyy- Mt dd’ T HH: nm ss. SSSX

http://docs.grails.org/6.1.2/api/grails/databinding/BindingFormat.html

Custom Formatted Converters

Y ou may supply your own handler for the BindingFormat annotation by writing a class
which implements the FormattedV alueConverter interface and registering an instance of that
class as a bean in the Spring application context. Below is an example of atrivial custom
String formatter that might convert the case of a String based on the value assigned to the
BindingFormat annotation.

package com nyapp. converters
i nport grails.databinding. converters. FornattedVal ueConverter

class FormattedStringVal ueConverter inplenents FornattedVal ueConverter {
def convert(value, String fornmat) {
i f(' UPPERCASE' == format) ({
val ue = val ue. t oUpper Case()
} else if(' LOANERCASE == format) {
val ue = val ue. t oLower Case()

val ue

Cl ass get Target Type() {
Il specifies the type to which this converter may be applied
String

}

An instance of that class needs to be registered as a bean in the Spring application context.
The bean name is not important. All beans that implemented FormattedV alueConverter will
be automatically plugged in to the data binding process.

grail s-app/conf/spring/resources.groovy

beans = {
formattedStringConverter com myapp. converters. FornattedStringVal ueConverter
...

}

With that in place the i ndi ngror mat @annotation may be applied to String fields to inform the
data binder to take advantage of the custom converter.

i mport grails. dat abi ndi ng. Bi ndi ngFor nat

cl ass Person {
@i ndi ngFor mat (' UPPERCASE')
String sonmeUpper CaseString

@i ndi ngFor mat (' LOANERCASE')
String someLower CaseString

String someQ herString
}

L ocalized Binding Formats

The Bi ndi ngror mat @nnotation supports localized format strings by using the optional code
attribute. If avalue is assigned to the code attribute that value will be used as the message
code to retrieve the binding format string from the nessagesour ce bean in the Spring
application context and that lookup will be localized.

inport grails. databi ndi ng. Bi ndi ngFor mat

class Person {
@i ndi ngFor mat (code="date. formats. birthdays')
Date birthDate

}

grails-app/conf/i1l8n/nmessages. properties
dat e. for mats. bi rt hdays=Mwildyyyy

grails-app/conf/i18n/nessages_es. properties
date. formats. bi rt hdays=ddMwWyyy

http://docs.grails.org/6.1.2/api/grails/databinding/BindingFormat.html
http://docs.grails.org/6.1.2/api/grails/databinding/converters/FormattedValueConverter.html

Structured Data Binding Editors

A structured data binding editor is a helper class which can bind structured request
parameters to a property. The common use case for structured binding isbinding to a pate
object which might be constructed from several smaller pieces of information contained in
several requ&t parameters with names like bi rt hday_nont h, bi rt hday_dat e and bi rt hday_year. The
structured editor would retrieve al of those individual pieces of information and use them to
construct apate.

The framework provides a structured editor for binding to at e 0bjects. An application may
register its own structured editors for whatever types are appropriate. Consider the following
classes:

src/main/groovy/databinding/Gadget.groovy
package dat abi ndi ng

cl ass Gadget {
Shape expandedShape
Shape conpressedShape

}
src/main/groovy/databinding/Shape.groovy
package dat abi ndi ng

cl ass Shape {
int area
}

A cadget has 2 snape fields. A shape has an area property. It may be that the application wants
to accept request parameters like wi dt h and nei ght and use those to calculate the area Of @ shape
at binding time. A structured binding editor iswell suited for that.

The way to register a structured editor with the data binding process is to add an instance of
the grails.databinding. TypedStructuredBindingEditor interface to the Spring application
context. The easiest way to implement the typedst r uct ur edsi ndi ngedi tor iNterface isto extend
the org.grails.databinding.converters.AbstractStructuredBindingEditor abstract class and
override the get pr oper t yval ue method as shown below:

src/main/groovy/databinding/converters/ StructuredShapeEditor.groovy
package dat abi ndi ng. converters
i mport dat abi ndi ng. Shape
import org.grails.databinding.converters. Abstract StructuredBi ndi ngEdi t or
class StructuredShapeEditor extends Abstract StructuredBi ndi ngEdit or <Shape> {
publ i c Shape get PropertyVal ue(Map val ues) {
/1 retrieve the individual values fromthe Map
def width = values.width as int

def height = val ues. height as int

/1 use the values to calculate the area of the Shape
def area = width * height

/] create and return a Shape with the appropriate area
new Shape(area: area)
}

}

An instance of that class needs to be registered with the Spring application context:

grails-app/conf/spring/resources.groovy

beans = {
shapeEdi t or dat abi ndi ng. converters. Struct uredShapeEdi t or
...

}

When the data binder binds to an instance of the cadget classit will check to seeif there are

http://docs.grails.org/6.1.2/api/grails/databinding/TypedStructuredBindingEditor.html
http://docs.grails.org/6.1.2/api/org/grails/databinding/converters/AbstractStructuredDateBindingEditor.html

request parameters with names conpr essedshape and expandedshape Which have a value of
"struct" and if they do exist, that will trigger the use of the st ruct ur edshapekdi tor . The
individual components of the structure need to have parameter names of the form
propertyName_structuredElementName. In the case of the cadget class above that would
mean that the conpr essedshape request parameter should have a value of "struct" and the

conpr essedShape_wi dt h and conpr essedShape_hei ght parameters should have values which repr@ent
the width and the height of the compressed shape. Similarly, the expandedshape request
parameter should have avalue of "struct" and the expandedshape_wi dt h and expandedshape_hei ght
parameters should have values which represent the width and the height of the expanded
Shape.

grails-app/controllers/demo/DemoController.groovy
class DenmpbController {
def Ci eat eGadget (Gadget gadget) {
; deno/ cr eat eGadget ?expandedShape=st r uct &xpandedShape_wi dt h=80&expandedShape_hei ght =30
&conpr essedShape=st r uct & onpr essedShape_wi dt h=10&conpr essedShape_hei ght =3
*/
/1 with the request paraneters shown above gadget.expandedShape. area woul d be 2400

/1 and gadget . conpressedShape. area woul d be 30
1o

}

Typically the request parameters with "struct” as their value would be represented by hidden
form fields.

Data Binding Event Listeners

The DataBindingL istener interface provides a mechanism for listenersto be notified of data
binding events. The interface looks like this:

package grails. dat abi ndi ng. events;

inport grails.databinding.errors. Bi ndingError;

/-k*
* Alistener which will be notified of events generated during data binding.
*
* @ut hor Jeff Brown
* @ince 3.0
* @ee Dat aBi ndi ngLi st ener Adapt er
*/
public interface DataBindi ngLi stener {
/**
* @eturn true if the listener is interested in events for the specified type.
*/

bool ean supports(Cd ass<?> clazz);
/ *
Cal | ed when data binding is about to start.

@aram target The object data binding is being inposed upon
@aramerrors the Spring Errors instance (a org.springframework. validation. Bi ndi ngResul t)
@eturn true if data binding should continue

* ok k% %k

*/

Bool ean bef or eBi ndi ng(Cbj ect target, Object errors);

*

/
Cal | ed when data binding is about to inposed on a property

@aram target The object data binding is being inposed upon

@ar am propertyNane The nane of the property being bound to

@ar am val ue The val ue of the property being bound

@aramerrors the Spring Errors instance (a org.springframework. validation. Bi ndi ngResul t)
@eturn true if data binding should continue, otherwi se return false

E N S

*/
Bool ean beforeBi ndi ng(Obj ect target, String propertyName, Object value, Object errors);

*

/
Called after data binding has been inposed on a property

@aram target The object data binding is being inposed upon
@ar am propertyNanme The name of the property that was bound to
@aramerrors the Spring Errors instance (a org.springframework. validation. Bi ndi ngResul t)

* % ok k% *

http://docs.grails.org/6.1.2/api/grails/databinding/events/DataBindingListener.html

*/
voi d afterBinding(Object target, String propertyNane, Object errors);

/ *
Call ed after data binding has finished.

@aram target The object data binding is being inposed upon
@aramerrors the Spring Errors instance (a org.springframework. validation. Bi ndi ngResul t)

*
*
*
*
*
%/

voi d afterBinding(Object target, Cbject errors);

| *x*

* Called when an error occurs binding to a property

* @aram error encapsul ates information about the binding error

* @aramerrors the Spring Errors instance (a org.springfranework. validation.Bi ndi ngResul t)
* @ee BindingError

*/
voi d bi ndi ngError(BindingError error, Cbject errors);

}

Any bean in the Spring application context which implements that interface will
automatically be registered with the data binder. The DataBindingListenerAdapter class
implements the pat asi ndi ngLi st ener interface and provides default implementations for all of
the methods in the interface so this classis well suited for subclassing so your listener class
only needs to provide implementations for the methods your listener isinterested in.

Using The Data Binder Directly

There are situations where an application may want to use the data binder directly. For
example, to do binding in a Service on some arbitrary object which isnot adomain class.
The following will not work because the properties property isread only.

src/main/groovy/bindingdemo/Widget.groovy
package bi ndi ngdeno
cl ass Wdget {

String nane
I nteger size

grail s-app/services/bindingdemo/WidgetService.groovy
package bi ndi ngdeno
cl ass Wdget Service {
def updat eW dget (W dget w dget, Map data) {
/1 this will throw an exception because
/] properties is read-only
wi dget . properties = data

}

An instance of the data binder isin the Spring application context with a bean name of
grai | svebbat aBi nder . That bean implements the DataBinder interface. The following code
demonstrates using the data binder directly.

grails-app/services/bindingdmeo/WidgetService
package bi ndi ngdeno

i nport grails.databindi ng. Si npl eMapDat aBi ndi ngSour ce
cl ass Wdget Service {

/1 this bean will be autowired into the service
def grail sWebDat aBi nder

def updat eW dget (W dget w dget, Map data) {
grai | swebDat aBi nder . bi nd wi dget, data as Si npl eMapDat aBi ndi ngSour ce
}

}

See the DataBinder documentation for more information about overloaded versions of the
bi nd Method.

http://docs.grails.org/6.1.2/api/grails/databinding/events/DataBindingListenerAdapter.html
http://docs.grails.org/6.1.2/api/grails/databinding/DataBinder.html
http://docs.grails.org/6.1.2/api/grails/databinding/DataBinder.html

Data Binding and Security Concerns

When batch updating properties from request parameters you need to be careful not to allow
clients to bind malicious data to domain classes and be persisted in the database. Y ou can
limit what properties are bound to a given domain class using the subscript operator:

def p = Person.get(1)

p.properties['firstNane','lastNane'] = parans
In this case only thefirstname and 1 ast name properties will be bound.

Another way to do thisisisto use Command Objects as the target of data binding instead of
domain classes. Alternatively thereis also the flexible bindData method.

The bi ndoat a Mmethod allows the same data binding capability, but to arbitrary objects:

def p = new Person()
bi ndDat a(p, paramns)

The bi ndpat a method also lets you exclude certain parameters that you don’t want updated:

def p = new Person()
bi ndDat a(p, parans, [exclude: 'dateOBirth'])

Or include only certain properties:

def p = new Person()
bi ndDat a(p, parans, [include: ['firstNane', 'lastNane']])

If an empty List isprovided asavaluefor theinci ude parameter then all fields will be
subject to binding if they are not explicitly excluded.

The bindable constraint can be used to globally prevent data binding for certain properties.

7.1.6 Responding with JSON

Using the respond method to output JSON

The respond method is the preferred way to return JSON and integrates with Content
Negotiation and JSON Views.

The respond method provides content negotiation strategies to intelligently produce an
appropriate response for the given client.

For example given the following controller and action:

grails-app/controllers/example/BookController.groovy
package exanpl e
cl ass BookController {
def index() {
respond Book. list()

}

The respond method will take the followings steps:
1. If the client accept header specifies amediatype (for example appi i cati on/j son) Use that

2. If thefile extension of the URI (for example / books. j son) includes aformat defined in the
grails.mme. types property of grail s-app/ conf/application.yni USE the mediatype defined in the

http://views.grails.org

configuration

The responda method will then look for an appriopriate Renderer for the object and the
calculated mediatype from the RendererRegistry.

Grailsincludes a number of pre-configured renderer implementations that will produce
default representations of JSON responses for the argument passed to respond. FOr example
going to the/ book. j son URI will produce JSON such as:

[
{id:1,"title":"The Stand"},
{id:2,"title":"Shining"}

]

Controlling the Priority of Media Types

By default if you define a controller thereis no priority in terms of which format is sent
back to the client and Grails assumes you wish to serve HTML as a response type.

However if your application is primarily an API, then you can specify the priorty using the
r esponseFor mat s Property:

grails-app/controllers/example/BookController.groovy
package exanpl e

cl ass BookController {
static responseFormats = ['json', "htm']
def index() {
respond Book. list()
}
}

In the above example Grails will respond by default with j son if the mediatype to respond
with cannot be calculated from the accept header or file extension.

Using Viewsto Output JSON Responses

If you define aview (either a GSP or a JSON View) then Grailswill render the view when
using the respond method by calculating a model from the argument passed to respond.

For example, in the previous listing, if you were to define grai 1 s- app/ vi ews/ i ndex. gson @and

grail s-app/vi ews/ i ndex. gsp ViGNS, these would be used if the client requested appl i cation/json OF
text/htmt Mediatypes respectively. Thus allowing you to define a single backend capable of
serving responses to aweb browser or representing your application’s API.

When rendering the view, Grails will calculate amodel to pass to the view based on the type
of the value passed to the r espond Mmethod.

The following table summarizes this convention:

Example Argument Type Calculated Model Variable
respond Book. list() java.util.List bookLi st
respond([]) java.util.List enpt yLi st

respond Book. get (1) exanpl e. Book book

http://docs.grails.org/6.1.2/api/grails/rest/render/Renderer.html
http://docs.grails.org/6.1.2/api/grails/rest/render/RendererRegistry.html
http://views.grails.org

respond([1,2]) java.util.List i nt egerlLi st
respond([1,2] as Set) java. util. Set i nt eger Set

respond([1,2] as Integer[]) I nteger[] i nteger Array

Using this convention you can reference the argument passed to respond from within your
view:

grails-app/views/book/index.gson
@i el d Li st <Book> bookList =[]

json bookList, { Book book ->
title book.title
}

You will notice that if sook.1ist() returnsan empty list then the model variable nameis
trandated to enptyLi st . Thisis by design and you should provide adefault value in the view
if no model variableis specified, such asthe i st in the example above:

grails-app/views/book/index.gson

/] defaults to an enpty Iist
@i el d Li st <Book> bookList =[]

There are cases where you may wish to be more explicit and control the name of the model
variable. For example if you have a domain inheritance hierarchy whereacall to1ist() my
return different child classes relying on automatic calculation may not be reliable.

In this case you should pass the model directly using respond and a map argument:
respond bookList: Book.list()

When responding with any kind of mixed argument typesin a collection, always use an
explicit model name.

If you ssimply wish to augment the cal culated model then you can do so by passing a model
argument:

respond Book.list(), [nodel: [bookCount: Book.count()]]

The above exampIeW|II produce amodel like [bookLi st : books, bookCount : t ot al Books] , Where
the calculated model is combined with the model passed in the model argument.

Using the render method to output JSON

The render method can aso be used to output JSON, but should only be used for ssmple
cases that don’'t warrant the creation of a JSON view:

def list() {
def results = Book.list()
render (content Type: "application/json") {

books(results) { Book b ->
title b.title
}

}
}

In this case the result would be something along the lines of :

{"title":"The Stand"},
{"title":"Shining"}
]

This technique for rendering JSON may be ok for very simple responses, but in general
you should favour the use of JSON Views and use the view layer rather than embedding
logic in your application.

The same dangers with naming conflicts described above for XML also apply to JSON
building.

7.1.7 Moreon JSONBuilder

The previous section on XML and JSON responses covered simplistic examples of
rendering XML and JSON responses. Whilst the XML builder used by Grailsis the standard
XmlSlurper found in Groovy.

For JSON, since Grails 3.1, Grails uses Groovy’s StreamingJsonBuilder by default and you

can refer to the Groovy documentation and StreamingJsonBuilder API documentation on
how to useit.

7.1.8 Responding with XML

7.1.9 Uploading Files

Programmatic File Uploads

Grails supports file uploads using Spring’ s MultipartHttpServletRequest interface. The first
step for file uploading is to create a multipart form like this:

Upl oad Form

<g: upl oadFor m act i on="upl oad" >
<input type="file" name="nyFile" />
<input type="submt" />
</ g: upl oadFor n»

The upl oadFor mtag conveniently adds the enct ype="nul tipart/form data" attribute to the standard
<g: f orme tag.

There are then a number of ways to handle the file upload. One isto work with the Spring
MultipartFile instance directly:

def upload() {
def f = request.getFile('nmyFile")

if (f.empty) {
flash. message = 'file cannot be enpty’
render (view ' upl oadForm)
return

}

f.transferTo(new File('/sone/local/dir/nyfile.txt"))
response. sendError (200, 'Done')

}

Thisis convenient for doing transfers to other destinations and manipulating the file directly
as you can obtain an i nput streamand so on with the MultipartFile interface.

File Uploadsthrough Data Binding

http://groovy-lang.org/processing-xml.html#_xmlparser_and_xmlslurper
http://docs.groovy-lang.org/latest/html/documentation/core-domain-specific-languages.html#_streamingjsonbuilder
http://docs.groovy-lang.org/latest/html/documentation/core-domain-specific-languages.html#_streamingjsonbuilder
https://docs.groovy-lang.org/3.0.11/html/gapi/groovy/json/StreamingJsonBuilder.html
https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/web/multipart/MultipartHttpServletRequest.html
https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/web/multipart/MultipartFile.html
https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/web/multipart/MultipartFile.html

File uploads can also be performed using data binding. Consider this 1 mage domain class:

class I mage {
byte[] nyFile

static constraints = {
/1 Limt upload file size to 2MB
nyFile maxSize: 1024 * 1024 * 2
}
}

If you create an image using the parans Object in the constructor as in the example below,
Grailswill automatically bind the file's contents as abyte[] to the nyri1e property:

def ing = new | nage(parans)

I’ simportant that you set the size or maxSize constraints, otherwise your database may be
created with asmall column size that can’t handle reasonably sized files. For example, both
H2 and MySQL default to ablob size of 255 bytesfor byte[] properties.

It is also possible to set the contents of the file as a string by changing the type of the nyri i e
property on the image to a String type:

class I nmage {
String nyFile
}

Increase Upload Max File Size

Grails default size for file uploads is 128000 (~128KB). When this limit is exceeded you' Il
see the following exception:

org. springframework. web. nul tipart. Mul tipart Exception: Could not parse multipart servlet request; nested exception i
Y ou can configure the limit in your appt i cation. yni as follows:

grails-app/conf/application.yml
grails:
control | ers:
upl oad:

maxFi | eSi ze: 2000000
maxRequest Si ze: 2000000

maxFi | esi ze = The maximum size allowed for uploaded files.
maxRequest Si ze = The maximum size allowed for multipart/form-data requests.

Y ou should keep in mind OWA SP recommendations - Unrestricted File Upload

Limit the file size to amaximum value in order to prevent denial of service attacks.

These limits exist to prevent DoS attacks and to enforce overall application performance

7.1.10 Command Objects

Grails controllers support the concept of command objects. A command object is a class that
is used in conjunction with data binding, usually to allow validation of datathat may not fit
into an existing domain class.

A classisonly considered to be a command object when it is used as a parameter of an

https://www.owasp.org/index.php/Unrestricted_File_Upload

action.

Declaring Command Objects

Command object classes are defined just like any other class.

class Logi nCommand i npl ements grails.validation. Validateable {
String usernane
String password

static constraints = {
user nane(bl ank: false, mnSize: 6)
passwor d(bl ank: false, minSize: 6)

}

In this example, the command object class implements the vai i dat eabi e trait. The vai i dat eabl
trait allows the definition of Constraints just like in domain classes. If the command object
is defined in the same source file as the controller that isusing it, Grails will automatically
make it val i dat eabl e. It iSNOt required that command object classes be validateable.

By default, all vai i dat eanl e Object properties which are not instances of j ava. utii. col I ection OF
java.util.Map dl€null abl e: fal se. |nStanCeSijava. util.Collection andj ava.util.Mp default to
nul labl e: true. If YOU Want aval i dat eabl e that hasnui 1abi e: true properties by default, you can
specify this by defining a def aul t vt 1 abl e method in the class:

cl ass Aut hor Sear chConmand i npl enents grails.validation.Validateable {
String name
I nteger age

static bool ean defaul tNul | abl e() {
true

}
}

In this example, both nane and age Will alow null values during validation.
Using Command Objects

To use command objects, controller actions may optionally specify any number of command
object parameters. The parameter types must be supplied so that Grails knows what objects
to create and initialize.

Before the controller action is executed Grails will automatically create an instance of the
command object class and popul ate its properties by binding the request parameters. If the
command object class is marked with vai i dat eabl e then the command object will be
validated. For example:

class LoginController {

def | ogi n(Logi nCommand cnd) {
if (cnd. hasErrors()) {
redirect(action: 'loginForm)
return

}

/1 work with the command object data
}
}

If the command object’ stype isthat of adomain class and thereisan i ¢ request parameter
then instead of invoking the domain class constructor to create a new instance a call will be
made to the static get method on the domain class and the value of the i ¢ parameter will be
passed as an argument.

Whatever isreturned from that call to get iswhat will be passed into the controller action.
Thismeansthat if thereisan i d request parameter and no corresponding record isfound in

the database then the value of the command object will be nui 1. If an error occurs retrieving
the instance from the database then nui1 Will be passed as an argument to the controller
action and an error will be added the controller’serrors property.

If the command object’ stype isadomain class and thereisno i ¢ request parameter or there
isanid request parameter and its value is empty then nuit will be passed into the controller
action unless the HTTP request method is "POST", in which case a new instance of the
domain class will be created by invoking the domain class constructor. For all of the cases
where the domain class instance is non-null, data binding is only performed if the HTTP
request method is"POST", "PUT" or "PATCH".

Command Objects And Request Parameter Names

Normally request parameter names will be mapped directly to property namesin the
command object. Nested parameter names may be used to bind down the object graph in an
intuitive way.

In the example below arequest parameter named nare Will be bound to the nare property of
the per son instance and a request parameter named address. ci ty Will be bound to thecity
property of the address property in the person.

class StoreController {
def buy(Person buyer) {
...
}
}

class Person {
String nane
Addr ess address

}

cl ass Address {
String city
}

A problem may arise if a controller action accepts multiple command objects which happen
to contain the same property name. Consider the following example.

class StoreController {
def buy(Person buyer, Product product) {
...
}
}

class Person {
String nane
Addr ess address

}

cl ass Address {
String city
}

cl ass Product {
String nane
}

If there is arequest parameter named nare it iSN't clear if that should represent the name of
the product Or the name of the rerson. Another version of the problem can come up if a
controller action accepts 2 command objects of the same type as shown below.

class StoreController {
def buy(Person buyer, Person seller, Product product) {
...
}
}

class Person {
String nane
Addr ess addr ess

}

cl ass Address {

String city
}

class Product {
String nane
}

To help deal with this the framework imposes specia rules for mapping parameter names to
command object types. The command object data binding will treat all parameters that begin
with the controller action parameter name as belonging to the corresponding command
object.

For example, the product . name request parameter will be bound to the nare property in the
product argument, the buyer. name request parameter will be bound to the nane property in the
buyer @argument the sel i er. address. ci ty request parameter will be bound to the city property of
the addr ess property of the sei1er @argument, etc...

Command Objects and Dependency | njection

Command objects can participate in dependency injection. Thisis useful if your command
object has some custom validation logic which uses a Grails service:

class Logi nCommand i npl ements grails.validation. Validateable {
def 1 oginService

String usernanme
String password

static constraints = {
usernane validator: { val, obj ->
obj . I ogi nServi ce. canLogi n(obj . user nane, obj . password)

}
}

In this example the command object interacts with the 1 ogi nservi ce bean which isinjected by
name from the Spring App! i cat i oncont ext .

Binding The Request Body To Command Objects

When arequest is made to a controller action which accepts a command object and the
request contains a body, Grails will attempt to parse the body of the request based on the
request content type and use the body to do data binding on the command object. See the
following example.

grails-app/controllers/bindingdemo/DemoController.groovy
package bi ndi ngdeno
cl ass DenpController {

def createW dget (Wdget w {
render "Name: ${w?.nane}, Size: ${w?.size}"
}
}

cl ass Wdget {
String name
I nteger size

}

$ curl -H "Content-Type: application/json" -d '{"name":"Sone Wdget", "42"}'[size] |ocal host: 8080/ deno/creat eW dget
Nanme: Sone Wdget, Size: 42

$ curl -H "Content-Type: application/xm" -d '<w dget><name>Sonme O her W dget </ nane><si ze>2112</si ze></ wi dget>' | oc
Nane: Some Cther Wdget, Size: 2112

The request body will not be parsed under the following conditions:

® Therequest method is GET

® Therequest method isDELETE

® The content length isO

Note that the body of the request is being parsed to make that work. Any attempt to read the
body of the request after that will fail since the corresponding input stream will be empty.
The controller action can either use acommand object or it can parse the body of the request
on itsown (either directly, or by referring to something like request.JSON), but cannot do
both.

grails-app/controllers/bindingdemo/DemoController.groovy
package bi ndi ngdeno
class DempbController {
def createW dget (Wdget w) {
/1 this will fail because it requires reading the body,
/1 which has already been read.
def json = request.JSON

...
}

Working with Lists of Command Objects

A common use case for command objects is a Command Object that contains a collection of
another:

cl ass DenpController {

def creat eAut hor (Aut hor Command conmmand) {
1.

}
cl ass Aut hor Command {

String full Nane
Li st <BookConmand> books

}

cl ass BookConmand {
String title
String isbn

}
On this example, we want to create an Author with multiple Books.
In order to make this work from the Ul layer, you can do the following in your GSP:

<g: f orm nane="submi t - aut hor - books" control | er="dem" action="creat eAut hor">
<g:fiel dval ue nane="ful | Nane" val ue=""/>

<g:fiel dval ue name="books[O0].title" value=""/>
<g: fi el dval ue nane="books[0].isbn" value=""/>

<g:fiel dval ue name="books[1].title" value=""/>
<g: fi el dval ue name="books[1].isbn" val ue=""/>

</ g:forne

Thereis aso support for JISON, so you can submit the following with correct databinding

"full Nane": "G aene Rocher",

"books": [{
"title": "The Definitive Guide to Gails",
"isbn": "1111-343455-1111"

"title": "The Definitive Guide to Gails 2",
"isbn": "1111-343455-1112"

H,
}

7.1.11 Handling Duplicate Form Submissions

Grails has built-in support for handling duplicate form submissions using the " Synchronizer
Token Pattern". To get started you define atoken on the form tag:

<g: form useToken="true" ...>

Then in your controller code you can use the withForm method to handle valid and invalid
requests:

wi t hForm {
/1 good request
}.invalidToken {
/1 bad request
}

If you only provide the withForm method and not the chained i nvai i dtoken method then by
default Grails will store the invalid token in ariash. i nval i dtoken Variable and redirect the
request back to the original page. This can then be checked in the view:

<g:if test="%{flash.invalidToken}">
Don't click the button twice!
</g:if>

The withForm tag makes use of the session and hence requires session affinity or clustered
sessionsif used in a cluster.

7.1.12 Simple Type Converters

Type Conversion M ethods

If you prefer to avoid the overhead of data binding and simply want to convert incoming
parameters (typically Strings) into another more appropriate type the params object has a
number of convenience methods for each type:

def total = paranms.int('total')

The above example usesthe i nt method, and there are also methods for bool ean, 1 ong, char,
short and so on. Each of these methods is null-safe and safe from any parsing errors, so you
don’'t have to perform any additional checks on the parameters.

Each of the conversion methods allows a default value to be passed as an optional second

argument. The default value will be returned if a corresponding entry cannot be found in the
map or if an error occurs during the conversion. Example:

def total = parans.int('total', 42)
These same type conversion methods are also available on the attrs parameter of GSP tags.
Handling Multi Parameters

A common use case is dealing with multiple request parameters of the same name. For
example you could get a query string such as 2nane=Bob&name=Judy.

In this case dealing with one parameter and dealing with many has different semantics since

https://gsp.grails.org/6.1.0/ref/Tags/form.html

Groovy’ s iteration mechanicsfor string iterate over each character. To avoid this problem
the params object provides aiist method that always returns alist:

for (nanme in parans.list('nane')) {
println nanme
}

7.1.13 Declarative Controller Exception Handling

Grails controllers support a simple mechanism for declarative exception handling. If a
controller declares a method that accepts a single argument and the argument typeis

j ava. | ang. Excepti on O SOMe subclass of j ava. | ang. Excepti on, that method will be invoked any
time an action in that controller throws an exception of that type. See the following example.

grails-app/controllers/demo/DemoController.groovy
package deno
class DenpController {

def sonmeAction() {

/1 do some work
}

def handl eSQLExcepti on(SQLException e) {
render ' A SQLException Was Handl ed'

def handl eBat chUpdat eExcepti on(Bat chUpdat eExcepti on e) {
redirect controller: 'logging , action: 'batchProblem

def handl eNunber For mat Except i on(Nunber For mat Exception nfe) {
[probl enDescription: 'A Nunber Was Invalid']

}
That controller will behave asif it were written something like this...

grails-app/controllers/demo/DemoController.groovy
package deno
class DempbController {

def soneAction() {

try {
// do sonme work
} catch (BatchUpdat eException e) {
return handl eBat chUpdat eExcepti on(e)
} catch (SQLException e) {
return handl eSQLException(e)
} catch (Nunber For mat Exception e) {
return handl eNunber For mat Excepti on(e)

def handl eSQLExcepti on(SQLException e) {
render ' A SQ.Exception Was Handl ed'

def handl eBat chUpdat eExcepti on(Bat chUpdat eExcepti on e) {
redirect controller: 'logging' , action: 'batchProblem

def handl eNunber For mat Except i on(Nunber For mat Exception nfe) {
[probl enDescription: A Nunmber Was Invalid']

}

The exception handler method names can be any valid method name. The name is not what
makes the method an exception handler, the excepti on argument type is the important part.

The exception handler methods can do anything that a controller action can do including
invoking render, redirect , returning a model, etc.

One way to share exception handler methods across multiple controllersisto use

inheritance. Exception handler methods are inherited into subclasses so an application could
define the exception handlersin an abstract class that multiple controllers extend from.
Another way to share exception handler methods across multiple controllersis to use atrait,
as shown below...

src/main/groovy/com/demo/DatabaseExceptionHandler.groovy
package com denp
trait DatabaseExcepti onHandl er {

def handl eSQLExcepti on(SQLException e) {
/1 handl e SQLException
}

def handl eBat chUpdat eExcepti on(Bat chUpdat eExcepti on e) {
/1 handl e Bat chUpdat eExcepti on
}

}
grails-app/controllers/com/demo/DemoController.groovy

package com deno
class DenpoController inplenments DatabaseExceptionHandl er {

/1 all of the exception handl er nethods defined
/1 in DatabaseExcepti onHandl er will be added to
/1 this class at conpile tine

}

Exception handler methods must be present at compile time. Specifically, exception handler
methods which are runtime metaprogrammed onto a controller class are not supported.

7.2 Groovy Server Pages

Groovy Servers Pages (or GSP for short) is Grails' view technology. It is designed to be
familiar for users of technologies such as ASP and JSP, but to be far more flexible and
intuitive.

Although GSP can render any format, not just HTML, it is more designed around
rendering markup. If you are looking for away to simplify JSON responses take alook at
JSON Views.

GSPslivein the graiis-app/vi ews directory and are typically rendered automatically (by
convention) or with the render method such as:

render (view "index")

A GSPistypically amix of mark-up and GSP tags which aid in view rendering.

Although it is possible to have Groovy logic embedded in your GSP and doing thiswill be
covered in this document, the practice is strongly discouraged. Mixing mark-up and code
isabad thing and most GSP pages contain no code and needn’t do so.

A GSPtypicaly hasa"model" which isaset of variables that are used for view rendering.
The model is passed to the GSP view from a controller. For example consider the following
controller action:

def show() {
[book: Book. get (parans.id)]
}

This action will look up asook instance and create a model that contains akey called book.
This key can then be referenced within the GSP view using the name book:

http://gsp.grails.org

${book.title}

Embedding data received from user input has the risk of making your application
vulnerable to an Cross Site Scripting (XSS) attack. Please read the documentation on XSS
prevention for information on how to prevent XSS attacks.

For more information on using GSP please refer to the dedicated GSP documentation.

7.3 URL Mappings

Throughout the documentation so far the convention used for URLSs has been the default of
I controller/action/id. HOwever, this convention is not hard wired into Grails and isin fact
controlled by a URL Mappings class located at

grail s-app/controllers/ nmypackage/ Ul Mappi ngs. gr oovy.

The uri vappi ngs Class contains a single property called mappi ngs that has been assigned a block
of code:

package mypackage

class Url Mappi ngs {
static mappings = {

}

7.3.1 Mapping to Controllersand Actions

To create asimple mapping simply use arelative URL as the method name and specify
named parameters for the controller and action to map to:

"/ product”(controller: "product", action: "list")

In this case we' ve mapped the URL /product to therist action of the product control 1 er . OMit
the action definition to map to the default action of the controller:

"/product”(controller: "product")

An aternative syntax is to assign the controller and action to use within a block passed to
the method:

"/ product” {
control l er = "product”
action = "list"

}

Which syntax you useislargely dependent on personal preference.

If you have mappings that all fall under a particular path you can group mappings with the
group method:

group "/product", {
"/appl e"(controller:"product”, id:"apple")
"/htc"(controller:"product”, id:"htc")

}

Y ou can a'so create nested gr oup Url mappings:

group "/store", {
group "/product”, {
"/ $id"(controller:"product")
}

}

http://gsp.grails.org

To rewrite one URI onto another explicit URI (rather than a controller/action pair) do
something like this:

"/hello"(uri: "/hello.dispatch")

Rewriting specific URIs s often useful when integrating with other frameworks.

7.3.2 Mapping to REST resour ces

Since Grails 2.3, it possible to create RESTful URL mappings that map onto controllers by
convention. The syntax to do so isasfollows:

"/ books" (resources: ' book')

Y ou define a base URI and the name of the controller to map to using the resour ces
parameter. The above mapping will result in the following URLSs:

HTTP Method URI Grails Action
GET /books index

GET /books/create create

POST /books save

GET /books/${ id} show

GET /books/${ id} /edit edit

PUT /books/${id} update
DELETE /books/${ id} delete

If you are not sure which mapping will be generated for your case just run the command
ur | - mappi ngs-report 1N your grails console. It will give you areally neat report for all the url

mappings.
If you wish to include or exclude any of the generated URL mappings you can do so with

the i ncl udes OF excl udes parameter, which accepts the name of the Grails action to include or
exclude:

"/ books" (resources: ' book', excludes:['delete', 'update'])
or

"/ books" (resources:'book', includes:['index', 'show])

Explicit REST M appings

Asof Grails 3.1, if you prefer not to rely on aresour ces mapping to define your mappings
then you can prefix any URL mapping with the HTTP method name (in lower case) to
indicate the HTTP method it applies to. The following URL mapping:

"/ books" (resources: ' book')

Is equivalent to:

get "/books"(controller:"book", action:"index")

get "/books/create"(controller:"book", action:"create")
post "/books"(controller:"book", action:"save")

get "/books/ $id"(controller:"book", action:"show')

get "/books/ $id/edit"(controller:"book", action:"edit")
put "/books/$i d"(controller:"book", action:"update")
del ete "/books/ $id"(controller:"book", action:"delete")

Notice how the HTTP method name is prefixed prior to each URL mapping definition.
Single resour ces

A singleresourceis aresource for which there is only one (possibly per user) in the system.
Y ou can create a single resource using the singi e parameter (as opposed to resour ces):

"/ book" (si ngl e: ' book")

Thisresultsin the following URL mappings:

HTTP Method URI Grails Action
GET /book/create create

POST /book save

GET /book show

GET /book/edit edit

PUT /book update
DELETE /book delete

The main differenceis that theid is not included in the URL mapping.
Nested Resour ces

Y ou can nest resource mappings to generate child resources. For example:

"/ books" (resources: ' book') {
"/ aut hors" (resources: "author")

The above will result in the following URL mappings:

HTTP Method URL GrailsAction

GET /books/${ bookld} /authors index

GET /books/${ bookl d} /authors/create Create
POST /books/${ booklId} /authors save
GET /books/${ bookl d} /authors/${ id} show
GET /books/${ bookld} /authors/edit/${ id} edit
PUT /books/${ book! d} /authors/${ id} update
DELETE /books/${ bookl d} /authors/${ id} delete

Y ou can also nest regular URL mappings within a resource mapping:

"/ books" (resources: "book") {
"/ publisher"(controller:"publisher")

}

Thiswill result in the following URL being available:
HTTP Method URL Grails Action

GET /books/${ bookld} /publisher index

To map aURI directly below aresource then use a collection block:

"/ books" (resources: "book") {
col lection {
"/ publisher"(controller:"publisher")
}

}

Thiswill result in the following URL being available (without the ID):
HTTP Method URL GrailsAction

GET /books/publisher index

Linking to RESTful Mappings

You can link to any URL mapping created with the g: 1 i nk tag provided by Grails ssmply by
referencing the controller and action to link to:

<g:link controller="book" action="index">M Link</g:link>

As aconvenience you can also pass a domain instance to the resour ce attribute of the i nk tag:

<g:link resource="${book}">M/ Link</g:link>
Thiswill automatically produce the correct link (in this case "/books/1" for anid of "1").

The case of nested resourcesis alittle different as they typically required two identifiers (the
id of the resource and the one it is nested within). For example given the nested resources:

"/ books" (resources: ' book') {
"/ aut hors"(resources: "author")

}

If you wished to link to the show action of the aut hor controller, you would write:

/1 Results in /books/1/authors/2
<g:link controller="author" action="show' nethod="GET" paranms="[bookld:1]" id="2">The Author</g:link>

However, to make this more concise there is aresour ce attribute to the link tag which can be
used instead:

/1 Results in /books/ 1/ authors/2
<g:link resource="book/author" action="show' bookld="1" id="2">M Link</g:link>

The resource attribute accepts a path to the resource separated by a slash (in this case
"book/author"). The attributes of the tag can be used to specify the necessary booki d
parameter.

7.3.3 RedirectsIn URL Mappings

Since Grails 2.3, it is possible to define URL mappings which specify aredirect. When a
URL mapping specifies aredirect, any time that mapping matches an incoming request, a
redirect isinitiated with information provided by the mapping.

When a URL mapping specifies aredirect the mapping must either supply a String
representing a URI to redirect to or must provide a Map representing the target of the
redirect. That Map is structured just like the Map that may be passed as an argument to the
redi rect Mmethod in acontroller.

"/ viewBooks" (redirect: [uri: '/books/list'])
"/viewAut hors"(redirect: [controller: "author', action: '"list'])
"/viewPublishers"(redirect: [controller: 'publisher', action: '"list', permanent: true])

Request parameters that were part of the original request will not be included in the redirect
by default. To include them it is necessary to add the parameter keeppar amswhenRedi rect: true.

"/vi ewBooks" (redirect: [uri: '/books/list', keepParanmsVWenRedirect: true])
"/viewAuthors"(redirect: [controller: "author', action: '"list', keepParansWhenRedirect: true])
"/ viewPublishers"(redirect: [controller: 'publisher', action: 'list', permanent: true, keepParansWenRedirect:

Simple Variables

The previous section demonstrated how to map simple URLs with concrete "tokens”. In
URL mapping speak tokens are the sequence of characters between each slash, /. A
concrete token is one which iswell defined such as as/ product . However, in many
circumstances you don’t know what the value of a particular token will be until runtime. In
this case you can use variable placeholders within the URL for example:

true

static mappings = {
"/ product/$id"(controller: "product")
}

In this case by embedding a $id variable as the second token Grails will automatically map
the second token into a parameter (available via the params object) called i 4. For example
given the URL / pr oduct / MacBook, the following code will render "MacBook™ to the response:

cl ass Product Controller {
def index() { render parans.id }
}

Y ou can of course construct more complex examples of mappings. For example the
traditional blog URL format could be mapped as follows:

static mappings = {
"/ $bl og/ $year/ $nont h/ $day/ $i d"(controller: "blog", action: "show')
}

The above mapping would let you do things like:

/ graemer ocher/ 2007/ 01/ 10/ ny_f unky_bl og_entry

The individual tokensin the URL would again be mapped into the params object with
values available for year, month, day, i d @and so on.

Dynamic Controller and Action Names

Variables can also be used to dynamically construct the controller and action name. In fact
the default Grails URL mappings use this technique:

static mappings = {
"/ $controller/$action?/$id?"()
}

Here the name of the controller, action and id are implicitly obtained from the variables
control I er, acti on @and i embedded within the URL.

Y ou can also resolve the controller name and action name to execute dynamically using a
closure:

static mappings = {
"/ $controller" {
action = { parans.goHere }
}
}

Optional Variables

Another characteristic of the default mapping is the ability to append a? at the end of a
variable to make it an optional token. In afurther example this technique could be applied to
the blog URL mapping to have more flexible linking:

static mappings = {
"/ $bl og/ $year ?/ $mont h?/ $day?/ $i d?" (control | er: "bl og", action:"show')
}

With this mapping all of these URL s would match with only the relevant parameters being
populated in the params object:

/ graemer ocher/ 2007/ 01/ 10/ ny_f unky_bl og_entry
/ graemer ocher/ 2007/ 01/ 10

/ graemer ocher/ 2007/ 01

/ gr aenmer ocher/ 2007

/ gr aemer ocher

Optional File Extensions

If you wish to capture the extension of a particular path, then a special case mapping exists:

"/ $controller/$action?/$id?(.$format)?"()

By adding the (. sf or mat) » mapping you can access the file extension using the response. f or mat
property in acontroller:

def index() {
render "extension is ${response.format}"
}

Arbitrary Variables

Y ou can aso pass arbitrary parameters from the URL mapping into the controller by just
setting them in the block passed to the mapping:

"/ holiday/w n" {
id = "Mrrakech"
year = 2007

}

This variables will be available within the params object passed to the controller.
Dynamically Resolved Variables

The hard coded arbitrary variables are useful, but sometimes you need to calcul ate the name
of the variable based on runtime factors. Thisis also possible by assigning a block to the
variable name:

"/ holiday/w n" {
id ={ parans.id }
isEligible = { session.user !=null } // must be logged in

}

In the above case the code within the blocks is resolved when the URL is actually matched
and hence can be used in combination with all sorts of logic.

7.3.5 Mapping to Views

Y ou can resolve a URL to aview without a controller or action involved. For exampleto
map the root URL / to a GSP at the location grai I s- app/ vi ews/ i ndex. gsp YOU could use:

static mappings = {
"/"(view. "/index") // map the root URL
}

Alternatively if you need aview that is specific to a given controller you could use:

static mappings = {
"/hel p"(controller: "site", view "help") // to a viewfor a controller

}

7.3.6 Mapping to Response Codes

Grails aso lets you map HTTP response codes to controllers, actions or views. Just use a
method name that matches the response code you are interested in:

static mappings = {
"403"(controller: "errors", action: "forbidden")
"404" (controller: "errors", action: "notFound")
"500"(controller: "errors", action: "serverError")

}

Or you can specify custom error pages:

static mappings = {
"403"(view "/errors/forbidden")
"404" (view "/errors/notFound")
"500"(view "/errors/serverError")

}
Declarative Error Handling

In addition you can configure handlers for individual exceptions:

static mappings = {

"403"(view "/errors/forbidden")

"404" (view. "/errors/notFound")

"500"(controller: "errors", action: "illegal Argunent”,
exception: I|l1legal Argunent Excepti on)

"500"(controller: "errors", action: "null Pointer",
exception: Nul | PointerException)

"500"(controller: "errors", action: "custonException",
exception: M/Exception)

"500"(view "/errors/serverError")

}

With thisconfiguration, aN |11 egal Ar gument Except i on will be handled by thein egal Ar gument
actioninerrorscontrol I er , A Nul | Poi nt er Excepti on will be handled by the nul 1 Poi nter action, and
awexcepti on Will be handled by the cust onexcept i on action. Other exceptions will be handled
by the catch-all rule and usethe/errors/serverError View.

Y ou can access the exception from your custom error handing view or controller action
using the request’ s except i on attribute like so:

class ErrorController {
def handl eError() {
def exception = request.exception
/1 performdesired processing to handle the exception

}
}

If your error-handling controller action throws an exception as well, you'll end up with a
St ackOver f | owExcepti on.

7.3.7 Mappingto HTTP methods

URL mappings can a so be configured to map based on the HTTP method (GET, POST,
PUT or DELETE). Thisisvery useful for RESTful APIsand for restricting mappings based
on HTTP method.

As an exampl e the following mappings provide a RESTful APl URL mappings for the

Product Control | er.

static mappings = {
"/ product/$id"(controller:"product”, action: "update", nethod: "PUT")
}

Note that if you specify a HTTP method other than GET in your URL mapping, you also
have to specify it when creating the corresponding link by passing the et hod argument to
g:1ink OF g: creat eLi nk tO g€t alink of the desired format.

7.3.8 Mapping Wildcards

Grails URL mappings mechanism also supports wildcard mappings. For example consider
the following mapping:

static mappings = {

"/images/*.jpg"(controller: "imge")

}

This mapping will match all paths to images such as /i mge/ 1 ogo. j pg. Of course you can
achieve the same effect with avariable:

static mappings = {
"/i mages/ $nare. j pg" (control ler: "inmage")
}

However, you can also use double wildcards to match more than one level below:

static mappings = {
"/images/**.jpg"(controller: "imge")
}

In this cases the mapplng will match /i mage/ | 0go. j pg aswell as/i mage/ ot her /1 ogo. j pg. EVEN
better you can use a double wildcard variable:

static mappings = {
/1 will match /inmage/l ogo.jpg and /i nmage/other/l ogo.jpg
"/images/ $name**.j pg"(controller: "image")

}

In this case it will store the path matched by the wildcard inside a nane parameter obtainable
from the params object:

def name = parans. nane
println nane // prints "logo" or "other/l ogo"

If you use wildcard URL mappings then you may want to exclude certain URIs from Grails
URL mapping process. To do this you can provide an exci udes Setting inside the
Ur | Mappi ngs. gr oovy class:

class Url Mappi ngs {
static excludes
static mappi ngs

}

["/images/*", "/css/*"]

}

In this case Grails won't attempt to match any URIs that start with /i mages OF /css.

7.3.9 Automatic Link Re-Writing

Another great feature of URL mappings is that they automatically customize the behaviour
of the link tag so that changing the mappings don’t require you to go and change al of your
links.

Thisis done through a URL re-writing technique that reverse engineers the links from the
URL mappings. So given a mapping such as the blog one from an earlier section:

static mappings = {
"/ $bl og/ $year ?/ $nont h?/ $day?/ $i d?" (control | er: "bl og", action:"show")
}

If you use the link tag as follows:

<g:link controller="blog" action="show'
paranms="[bl og: ' fred', year:2007]">

M/ Bl og
</ g:link>

<g:link controller="blog" acti on="show'
parans="[bl og: ' fred', year:2007, nonth:10]">
My Blog - Cctober 2007 Posts
</ g:link>

https://gsp.grails.org/6.1.0/ref/Tags/link.html

Grails will automatically re-write the URL in the correct format:

M Bl og</ a>
W Blog - October 2007 Posts

7.3.10 Applying Constraints

URL Mappings also support Grails' unified validation constraints mechanism, which lets
you further "constrain” how a URL is matched. For example, if we revisit the blog sample
code from earlier, the mapping currently looks like this:

static mappings = {
"/ $bl og/ $year ?/ $nont h?/ $day?/ $i d?" (control | er:"bl og", action:"show')
}

This alows URLSs such as:

/ graemer ocher/ 2007/ 01/ 10/ ny_f unky_bl og_entry

However, it would also alow:

/ graemerocher/ not _a_year/ not _a_nont h/ not _a_day/ nmy_f unky_bl og_entry

Thisis problematic asit forces you to do some clever parsing in the controller code.
Luckily, URL Mappings can be constrained to further validate the URL tokens:

"/ $bl og/ $year ?/ $ront h?/ $day?/ $i d?" {
control ler = "bl og"
action = "show'
constraints {
year (mat ches: /\\\d{4}/)
nont h(mat ches: /\\\ d{2}/)
day(mat ches: /\\\d{2}/)

}

In this case the constraints ensure that the year, mont h and day parameters match a particular
valid pattern thus relieving you of that burden later on.

7.3.11 Named URL Mappings

URL Mappings also support named mappings, that is mappings which have a name
associated with them. The name may be used to refer to a specific mapping when links are
generated.

The syntax for defining a named mapping is as follows:

static mappings = {
name <mappi ng name>: <url pattern> {
...
}
}

For example:

static mappings = {
name personList: "/showPeople" {

controller = 'person'
action = 'list'
}
nanme accountDetails: "/details/$acct Nunber" {
controller = "'product'
action = 'accountDetails'
}

The mapping may be referenced in alink tag in a GSP.

<g: li nk mappi ng="personLi st">Li st Peopl e</g: i nk>

That would result in:

Li st Peopl e</ a>

Parameters may be specified using the params attribute.

<g:li nk mappi ng="account Det ai | s" parans="[acct Nunber:' 8675309']">
Show Account
</ g:1ink>

That would result in:

Show Account </ a>

Alternatively you may reference a named mapping using the link namespace.

<l i nk: personLi st >Li st Peopl e</ i nk: personLi st >

That would result in:

Li st Peopl e</ a>

The link namespace approach allows parameters to be specified as attributes.

<link:accountDetails acctNunber="8675309">Show Account </l i nk: account Det ai | s>

That would result in:

Show Account </ a>

To specify attributes that should be applied to the generated nref , Specify amp value to the
attrs atribute. These attributes will be applied directly to the href, not passed through to be
used as request parameters.

<link:accountDetails attrs="[class: 'fancy']" acctNunmber="8675309">
Show Account
</ link:account Det ai | s>

That would result in:

Show Account </ a>

7.3.12 Customizing URL Formats

The default URL Mapping mechanism supports camel case namesin the URLs. The default
URL for accessing an action named addnunber s in @ controller named wat hiel per cont rol 1 er
would be something like / mat hiel per / addhunber s. Grails allows for the customization of this
pattern and provides an implementation which replaces the camel case convention with a
hyphenated convention that would support URLS like / mat h- hel per/ add- numbers. TO enable
hyphenated URL s assign avalue of "hyphenated” to the graiis. web. url . converter property in

grail s-app/ conf/application. groovy.

grail s-app/conf/application.groovy

grails.web.url.converter = 'hyphenated

Arbitrary strategies may be plugged in by providing a class which implements the
UrlConverter interface and adding an instance of that class to the Spring application context
with the bean name of grai 1 s. web. Ui converter. Bean_nave. |f Grails finds a bean in the context

http://docs.grails.org/6.1.2/api/grails/web/UrlConverter.html

with that name, it will be used as the default converter and there is no need to assign avalue
tothegrails. web. url . converter Config property.

src/main/groovy/com/myapplication/MyUrlConverterlmpl.groovy
package com nyapplication
class MyUrl Converterlnpl inplenents grails.web. Ul Converter {

String toUrl Elenent (String propertyOr C assNane) {
/1 return sone representation of a property or class nanme that should be used in URLs...
}

}
grail s-app/conf/spring/resources.groovy

beans = {
"${grails.web. Ul Converter. BEAN NAME}"(com nyappl i cation. MyUr| Converterlnpl)

7.3.13 Namespaced Controllers

If an application defines multiple controllers with the same name in different packages, the
controllers must be defined in a namespace. The way to define a namespace for a controller
isto define a static property named namespace in the controller and assign a String to the
property that represents the namespace.

grails-app/controllers/com/app/reporting/AdminController.groovy
package com app.reporting
class AdnminController {

static nanmespace = 'reports'

1.
}

grails-app/controllers/com/app/security/ AdminController.groovy
package com app. security
class AdminController {

static namespace = 'users'

...
}

When defining url mappings which should be associated with a namespaced controller, the
namespace Variable needs to be part of the URL mapping.

grails-app/controllers/UrlM appings.groovy
class Url Mappi ngs {
static mappings = {
"/user Adm n' {

controller = "adnmn'
nanespace = 'users'

"/report Admin' {
controller = 'adnmn'
nanespace = 'reports’

}

"/ $namespace/ $control | er/ $acti on?" ()

}

Reverse URL mappings also require that the nanespace be specified.

<g:link controller="adm n" namespace="reports">Cick For Report Adm n</g:link>
<g:link controller="adm n" namespace="users">Cick For User Adm n</g:link>

When resolving a URL mapping (forward or reverse) to a namespaced controller, a mapping

will only match if the namespace has been provided. If the application provides several
controllers with the same name in different packages, at most 1 of them may be defined
without ananespace property. If there are multiple controllers with the same name that do not
define anarespace property, the framework will not know how to distinguish between them
for forward or reverse mapping resolutions.

It isallowed for an application to use a plugin which provides a controller with the same
name as a controller provided by the application and for neither of the controllersto define a
namespace Property aslong as the controllers are in separate packages. For example, an
appllcatlon may include a controller named com accounti ng. ReportingControll er and the
application may use a plugin which provides a controller named

com humanr esour ces. Reporti ngControl I er. The only issue with that is the URL mappl ng for the
controller provided by the plugin needs to be explicit in specifying that the mapping applies
to the ReportingControl |l er whichis provided by the p| ugin.

See the following example.

static mappings = {
"/accounti ngReports" {
controller = "reporting"

"/ humanResour ceReports" {
controller = "reporting"
pl ugi n = "hunmanResour ces"

}

With that mapping in place, arequest to / account i ngreports Will be handled by the
ReportingCont rol I er Which is defined in the appllcatlon A request tO / humanResour ceReport s will
be handled by the repor tingcont rol 1er Which is provided by the humanRresour ces pl ugin.

There could be any number of reportingcontrol 1 er controllers provided by any number of
plugins but no plugin may provide more than one reportingcontrol 1 er even if they are defined
in separate packages.

Assigning avalue to the pi ugi n Variable in the mapping is only required if there are multiple
controllers with the same name available at runtime provided by the application and/or
plugins. If the humanresour ces plugin provides areportingcontrol 1 er @nd thereis no other

Repor ti ngCont rol I er @vailable at runtime, the following mapping would work.

static mappings = {
"/ humanResour ceReports" {
controller = "reporting"
}

}

It is best practice to be explicit about the fact that the controller is being provided by a
plugin.

7.4 CORS

Spring Boot provides CORS support out of the box, but it is difficult to configurein a Grails
application due to the way UrlIMappings are used instead of annotations that define URLSs.
Starting with Grails 3.2.1, we have added away to configure CORS that makes sensein a
Grails application.

Once enabled, the default setting is "wide open".

application.yml

grails:
cors:
enabl ed: true

That will produce a mapping to al urls;++ with:

allowedOrigins ["*']
allowedMethods ['*]
alowedHeaders ["*']
exposedHeaders nul |
maxAge 1800
allowCredentias false

Some of these settings come directly from Spring Boot and can change in future versions.

See Spring CORS Configuration Documentation

All of those settings can be easily overridden.

application.yml

grails:
cors:
enabl ed: true
al | onedOri gi ns:
- http://1ocal host: 5000

In the example above, the ai 1 owedari gi ns Setting will replace [+
Y ou can aso configure different URLS.

application.yml

grails:
cors:
enabl ed: true
al | onedHeader s:
- Content-Type
nmappi ngs:
"[lapi/**]":
al | owedCri gi ns:
- http://1ocal host: 5000
Other configurations not specified default to the global config

Note that the mapping key must be made with bracket notation (see
//qi g

), whichis abreakl ng change between Sprlng Boot 1.5 (Gra|Is3) and Spring Boot 2 (Grails
4).

Specifying at least one mapping will disable the creation of the global mapping (/++). If
you wish to keep that setting, you should specify it along with your other mappings.

The settings above will produce a single mapping of /api /++ with the following settings:

https://docs.spring.io/spring/docs/5.3.30/javadoc-api//org/springframework/web/cors/CorsConfiguration.html#applyPermitDefaultValues
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#map-based-binding
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#map-based-binding

aIIowedOrlgl ns ['http://1ocal host:5000']

allowedMethods ['*]
alowedHeaders [Content - Type']
exposedHeaders nul |

maxAge 1800
allowCredentials false

If you don’t wish to override any of the default settings, but only want to specify URLS, you
can do so like this example:

application.yml

grails:
cors:
enabl ed: true

mappi ngs:
"[/api/**]": inherit
7.5 Interceptors

Grails provides standal one I nterceptors using the create-interceptor command:

$ grails create-interceptor Mylnterceptor

The above command will create an Interceptor in the grai i s-app/ control 1 ers directory with the
following default contents:

class Mylnterceptor {
bool ean before() { true }
bool ean after() { true }
void afterViewm) {
/1 no-op

}
}

InterceptorsvsFilters

In versions of Grails prior to Grails 3.0, Grails supported the notion of filters. These are till
supported for backwards compatibility but are considered deprecated.

The new interceptors concept in Grails 3.0 is superior in a number of ways, most

significantly interceptors can use Groovy’s compi | est at i ¢ @annotation to optimize performance
(something which is often critical as interceptors can be executed for every request.)

7.5.1 Defining I nter ceptors

By default interceptors will match the controllers with the same name. For example if you
have an interceptor called sooki ntercept or then al requests to the actions of the sookcont rol 1 er
will trigger the interceptor.

Aninterceptor implements the Interceptor trait and provides 3 methods that can be used to
intercept requests.

| *x*

* Executed before a matched action
*

* @eturn Wiether the action should continue and execute
*/

bool ean before() { true }

/**

* Executed after the action executes but prior to view rendering

*

* @eturn True if view rendering should continue, false otherw se
*/
bool ean after() { true }

| **

* Executed after view rendering conpletes
*/

void afterView) {}

As described above the vef ore method is executed prior to an action and can cancel the
execution of the action by returning r ai se.

The after method is executed after an action executes and can halt view rendering if it
returns false. The arter method can also modify the view or model using the vi ew and modet
properties respectively:

bool ean after() {

nodel . foo = "bar" // add a new nodel attribute called 'foo
view = "alternate' // render a different view called 'alternate'
true

}

The af tervi ew method is executed after view rendering completes. If an exception occurs, the
exception is available using the t nr owabl e property of the Interceptor trait.

7.5.2 Matching Requests with I nterceptors

As mention in the previous section, by default an interceptor will match only requests to the
associated controller by convention. However you can configure the interceptor to match
any request using the mat ch Or mat chal 1 Methods defined in the Interceptor API.

The matching methods return a Matcher instance which can be used to configure how the
interceptor matches the request.

For example the following interceptor will match all requests except those to the 1 ogin
controller:

class Authlnterceptor {
Aut hi nterceptor() {
mat chAl | ()
.excl udes(controller:"login")

}

bool ean before() {
/1 perform authentication

}

Y ou can a'so perform matching using named argument:

cl ass Loggi ngl nterceptor {
Loggi ngl nterceptor() {
mat ch(control | er:"book", action:"show') // using strings
mat ch(controller: ~/(author|publisher)/) // using regex

http://docs.grails.org/6.1.2/api/grails/artefact/Interceptor.html
http://docs.grails.org/6.1.2/api/grails/artefact/Interceptor.html
http://docs.grails.org/6.1.2/api/grails/artefact/Interceptor.html
http://docs.grails.org/6.1.2/api/grails/interceptors/Matcher.html

}

bool ean before() {
}
}

Y ou can use any number of matchers defined in your interceptor. They will be executed in
the order in which they have been defined. For example the above interceptor will match for
all of thefollowing:

® when the show action of Bookcontrol1er iScalled
® when aut hor control I er OF PublisherControl ler 1SCalled
All named arguments except for uri accept either a String or a Regex expression. The uri

argument supports a String path that is compatible with Spring’ s AntPathMatcher. The
possible named arguments are:

® namespace - T he namespace of the controller
® controller - The name of the controller

® action - The name of the action

® ethod - The HTTP method

® uri - The URI of the request. If thisargument is used then all other arguments will be
ignored and only thiswill be used.

7.5.3 Ordering I nterceptor Execution

Interceptors can be ordered by defining an order property that defines a priority.

For example:

class Authlnterceptor {

int order = H GHEST_PRECEDENCE

—

The default value of the order property is 0. Interceptor execution order is determined by
sorting the order property in an ascending direction and executing the lowest numerically
ordered interceptor first.

The values 1 aesT_Precebence and LovesT_Precepence can be used to define filters that should
should run first or last respectively.

Note that if you write an interceptor that isto be used by othersit is better increment or
decrement the 1 aHesT_precepence and Lonest_precepence tO allow other interceptorsto be
inserted before or after the interceptor you are authoring:

int order = H GHEST_PRECEDENCE + 50
/1l or

int order = LOWEST_PRECEDENCE - 50

To find out the computed order of interceptors you can add a debug logger to 1 ogback. groovy
asfollows:

https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/util/AntPathMatcher.html

| ogger 'grails.artefact.Interceptor', DEBUG ['STDOUT'], false

Y ou can override any interceptors default order by using bean override configuration in
grail s-app/ conf/application.ym .

beans:
aut hl nterceptor:
order: 50

Orin grail s-app/ conf/ appl i cation. groovy.

beans {
aut hl nterceptor {
order = 50
}
}

Thus giving you complete control over interceptor execution order.

7.6 Content Negotiation

Grails has built in support for Content negotiation using either the HTTP accept header, an
explicit format request parameter or the extension of a mapped URI.

Configuring Mime Types

Before you can start dealing with content negotiation you need to tell Grails what content
types you wish to support. By default Grails comes configured with a number of different
content types within grail s-app/ conf/application.yn us ng the grails.mme.types Setti ng:

grails:
m ne:
types:
all: "*[*'
atom application/atomtxm
css: text/css
csv: text/csv
form application/x-ww-formurlencoded
htni:
- text/htnl
- application/xhtnm +xm
js: text/javascript
j son:
- application/json
- text/json
nul tipartForm nultipart/formdata
rss: application/rss+xm
text: text/plain
hal :
- application/hal +j son
- application/ hal +xm
xm :
- text/xm
- application/xm

The setti ng can also bedonein grail s-app/ conf/application. groovy as shown below:

grails.mnme.types = [// the first one is the default fornat

all: "xfxt /] "all' maps to '*' or the first available format in w thFornat
atom "application/atomxm "',

css: "text/css',

CcSV: "text/csv',

form "appl i cation/ x- ww f orm url encoded' ,

htm : ["text/htm ', " application/xhtm +xm '],

js: "text/javascript',

j son: ["application/json', 'text/json'],

mul tipartForm 'nultipart/formdata',

rss: "application/rss+xm ',

text: "text/plain',

hal : ["application/hal +j son',"application/hal +xm '],
xm : ["text/xm ', "application/xm"]

]

The above bit of configuration allows Grailsto detect to format of arequest containing

http://en.wikipedia.org/wiki/Content_negotiation

either the 'text/xml' or "application/xml' mediatypes as simply 'xml'. Y ou can add your own
types by ssimply adding new entries into the map. The first one is the default format.

Content Negotiation using the format Request Parameter
Let’s say acontroller action can return aresource in avariety of formats: HTML, XML, and
JSON. What format will the client get? The easiest and most reliable way for the client to

control thisisthrough atormat URL parameter.

So if you, as abrowser or some other client, want aresource as XML, you can use a URL
likethis:

http://ny. domai n. or g/ books. xm

The request parameters f or mat isalowed aswell http://ny. domi n. or g/ books?f or mat =xni , UL
the default Grails URL Mappl NQg get "/$controller(.$format)?"(action:"index") will override
the format parameter with null. So the default mapping should be updated to get

"/ $controller"(action:"index").

The result of thison the server sideisartormat property on the response Object with the value
xm .

Y ou can aso define this parameter in the URL Mappings definition:

"/ book/list"(controller:"book", action:"list") {
format = "xnml"

}

Y ou could code your controller action to return XML based on this property, but you can
also make use of the controller-specific vi t hror mat () method:

This example requires the addition of the or g. grai I s. pl ugi ns: grai I s-pl ugi n- converters plugin

inmport grails.converters.JSON
import grails.converters. XM.

cl ass BookController {

def list() {
def books = Book.list()

wi t hFor mat {
htm bookLi st: books
json { render books as JSON }
xm { render books as XM }
"*' { render books as JSON }

}

}
}

In this example, Grails will only execute the block inside wi t hror mat () that matches the
requested content type. So if the preferred format isnem then Grails will execute the nini ()
call only. Each 'block’ can either be a map model for the corresponding view (as we are
doing for 'html" in the above example) or a closure. The closure can contain any standard
action code, for example it can return amodel or render content directly.

When no format matches explicitly, a» (wildcard) block can be used to handle all other
formats.

Thereisaspecial format, "all", that is handled differently from the explicit formats. If "all"
is specified (normally this happens through the Accept header - see below), then the first
block of vi thrormat () 1S executed when thereisn’t a~ (wildcard) block available.

Y ou should not add an explicit "all" block. In this example, aformat of "all" will trigger the
hemt handler (nem isthefirst block and thereisno + block).

http://my.domain.org/books?format=xml

wi t hFor mat {
htm bookLi st: books
json { render books as JSON }
xm { render books as XM }

}

When using withFormat make sureit isthe last call in your controller action as the return
value of the vi thror mat method is used by the action to dictate what happens next.

Using the Accept header

Every incoming HTTP request has a special Accept header that defines what mediatypes (or
mime types) aclient can "accept”. In older browsersthisistypicaly:

* [*

which simply means anything. However, newer browsers send more interesting values such
asthis one sent by Firefox:

text/xm , application/xm, application/xhtm +xm, text/htm;qg=0.9, \
text/plain;q=0.8, inmage/png, */*;q=0.5

This particular accept header is unhelpful because it indicates that XML isthe preferred
response format whereas the user isreally expecting HTML. That’s why Grailsignores the
accept header by default for browsers. However, non-browser clients are typically more
specific in their requirements and can send accept headers such as

application/json

As mentioned the default configuration in Grails is to ignore the accept header for browsers.
Thisis done by the Configuration Setti NG grails. m ne. di sabl e. accept . header . user Agent s, whichis
configured to detect the major rendering engines and ignore their ACCEPT headers. This
allows Grails' content negotiation to continue to work for non-browser clients:

grails.mnme. di sabl e. accept. header. user Agents = [' Gecko', '"WebKit', 'Presto', 'Trident']

For example, if it sees the accept header above (‘application/json’) it will set format t0j son as
you' d expect. And of course thisworks with the wi t hror mat () method in just the same way as
when therormat URL parameter is set (although the URL parameter takes precedence).

An accept header of */*' resultsin avalue of a1 for theformat property.

If the accept header is used but contains no registered content types, Grails will assume a
broken browser is making the request and will set the HTML format - note that thisis
different from how the other content negotiation modes work as those would activate the
"al" format!

Request format vs. Response for mat

Asof Grails 2.0, there is a separate notion of the request format and the response format.
The request format is dictated by the conrent_tvre header and is typically used to detect if the
incoming request can be parsed into XML or JSON, whilst the response format uses the file
extension, format parameter or ACCEPT header to attempt to deliver an appropriate
response to the client.

The withFormat available on controllers deals specifically with the response format. If you
wish to add logic that deals with the request format then you can do so using a separate
wi thrormat Method available on the request:

request.w t hFormat {
xm {

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Il read XML
}

json {
/1 read JSON
}

}

Content Negotiation with URI Extensions

Grails also supports content negotiation using URI extensions. For example given the
following URI:

/ book/list.xm

Thisworks as aresult of the default URL Mapping definition which is:

"/ $control |l er/$action?/$id?(.$format)?"{

Note theinclusion of the format variable in the path. If you do not wish to use content
negotiation via the file extension then simply remove this part of the URL mapping:

"/ $controller/$action?/ $i d?"{
Testing Content Negotiation

To test content negotiation in aunit or integration test (see the section on Testing) you can
either manipulate the incoming request headers:

voi d testJavascriptQutput() {
def controller = new TestController()
controll er.request.addHeader "Accept",
"text/javascript, text/htm, application/xm, text/xm, */*"

control ler.testAction()
assertEquals "alert('hello')", controller.response.contentAsString

}

Or you can set the format parameter to achieve asimilar effect:

voi d testJavascriptQutput() {
def controller = new TestController()
controller.parans. format = 'js'

controller.testAction()
assertEquals "alert('hello')", controller.response.contentAsString

}

8 Traits

Overview
Grails provides a number of traits which provide access to properties and behavior that may
be accessed from various Grails artefacts as well as arbitrary Groovy classes which are part

of a Grails project. Many of these traits are automatically added to Grails artefact classes
(like controllers and taglibs, for example) and are easy to add to other classes.

8.1 Traits Provided by Grails

Grails artefacts are automatically augmented with certain traits at compile time.
Domain Class Traits

® grals.artefact. DomainClass

http://docs.grails.org/6.1.2/api/grails/artefact/DomainClass.html

® grails.web.databinding.WebDataBinding
® org.grails.datastore.gorm.GormEntity

® org.grails.datastore.gorm.GormV alidateable

Controller Traits

® gralls.artefact.gsp.TagLibrarylnvoker

® grails.artefact. AsyncController

® grails.artefact.controller.RestResponder
® grails.artefact.Controller

Interceptor Trait

® grals.artefact.lnterceptor

Tag Library Trait

® grailsartefact. Tagl ibrary

Below isalist of other traits provided by the framework. The javadocs provide more detail
about methods and properties related to each trait.

Trait Brief Description
grails.web.api.WebAttributes Common Web Attributes
grails.web.api.ServletAttributes Servlet API Attributes
grails.web.databinding.DataBinder Data Binding AP

grails.artefact.controller.support. RequestForwarder Request Forwarding API
grails.artefact.controller.support. ResponseRedirector Response Redirecting AP

grails.artefact.controller.support.ResponseRenderer Response Rendering API

grails.validation.Validateable Validation API

8.1.1 WebAttributes Trait Example

WebAttributes is one of the traits provided by the framework. Any Groovy class may
implement thistrait to inherit all of the properties and behaviors provided by the trait.

http://docs.grails.org/6.1.2/api/grails/web/databinding/WebDataBinding.html
https://gorm.grails.org/8.0.2/api//org/grails/datastore/gorm/GormEntity.html
https://gorm.grails.org/8.0.2/api//org/grails/datastore/gorm/GormValidateable.html
https://gsp.grails.org/6.1.0/api/grails/artefact/gsp/TagLibraryInvoker.html
https://async.grails.org/latest/api/grails/artefact/AsyncController.html
http://docs.grails.org/6.1.2/api/grails/artefact/controller/RestResponder.html
http://docs.grails.org/6.1.2/api/grails/artefact/Controller.html
http://docs.grails.org/6.1.2/api/grails/artefact/Interceptor.html
https://gsp.grails.org/6.1.0/api/grails/artefact/TagLibrary.html
http://docs.grails.org/6.1.2/api/grails/web/api/WebAttributes.html
http://docs.grails.org/6.1.2/api/grails/web/api/ServletAttributes.html
http://docs.grails.org/6.1.2/api/grails/web/databinding/DataBinder.html
http://docs.grails.org/6.1.2/api/grails/artefact/controller/support/RequestForwarder.html
http://docs.grails.org/6.1.2/api/grails/artefact/controller/support/ResponseRedirector.html
http://docs.grails.org/6.1.2/api/grails/artefact/controller/support/ResponseRenderer.html
http://docs.grails.org/6.1.2/api/grails/validation/Validateable.html
http://docs.grails.org/6.1.2/api/grails/web/api/WebAttributes.html

src/main/groovy/demo/Hel per.groovy
package deno
inmport grails.web.api.WbAttributes
class Hel per inplenents WebAttributes {
Li st<String> getControl | erNanmes() {
/1 There is no need to pass grailsApplication as an argunent
/1 or otherwi se inject the grailsApplication property. The

/1 WebAttributes trait provides access to grail sApplication.
grail sApplication.getArtefacts(' Controller')*. nane

}

The traits are compatible with static compilation...

src/main/groovy/demo/Hel per.groovy
package deno

inport grails.web.api.WbAttributes
i mport groovy.transform ConpileStatic

@onpi | eStatic
class Hel per inplenents WebAttributes {

Li st<String> getControl | erNanes() {
/1 There is no need to pass grailsApplication as an argunent
/1 or otherwise inject the grailsApplication property. The
/1 WebAttributes trait provides access to grail sApplication.
grail sApplication.getArtefacts(' Controller')*. name

}
}

9 REST

REST isnot really atechnology in itself, but more an architectural pattern. REST is very
simple and just involves using plain XML or JSON as a communication medium, combined
with URL patterns that are "representational” of the underlying system, and HTTP methods
such as GET, PUT, POST and DELETE.

Each HTTP method maps to an action type. For example GET for retrieving data, POST for
creating data, PUT for updating and so on.

Grailsincludes flexible features that make it easy to create RESTful APIs. Creating a
RESTful resource can be as simple as one line of code, as demonstrated in the next section.

9.1 Domain classes as REST resources

The easiest way to create a RESTful API in Grailsisto expose adomain class asa REST
resource. This can be done by adding the grai i s. rest . resour ce transformation to any domain
class:

inport grails.rest.*

@Resour ce(uri="/books")
class Book {

String title

static constraints = {
title blank:fal se
}

}

Simply by adding the resour ce transformation and specifying a URI, your domain class will
automatically be available as a REST resource in either XML or JSON formats. The
transformation will automatically register the necessary RESTful URL mapping and create a

controller called sookcontrol T er.

You can try it out by adding some test data to soot st r ap. gr oovy:

def init = { servletContext ->
new Book(title:"The Stand").save()
new Book(title:"The Shining").save()

}

And then hitting the URL http://localhost:8080/books/1, which will render the response like:

<?xm version="1.0" encodi ng="UTF-8"?>
<book id="1">

<title>The Stand</title>
</ book>

If you change the URL to http://localhost:8080/books/1.json you will get a JSON response
such as:

{"id":1,"title":"The Stand"}

If you wish to change the default to return JSON instead of XML, you can do this by setting
theformat s attribute of the resour ce transformation:

inport grails.rest.*

@Resource(uri="/books', formats=['json', 'xnl'])
class Book {

}

With the above example JSON will be prioritized. The list that is passed should contain the
names of the formats that the resource should expose. The names of formats are defined in
the grails.mne.types setti ng of appl i cati on. groovy.

grails.mme.types = [
jébn: ['application/json', "text/json'],

x : ["text/xm "', "application/xm"]
]

See the section on Configuring Mime Types in the user guide for more information.

Instead of using the file extension in the URI, you can also obtain a JSON response using
the ACCEPT header. Here' s an example using the Unix curi tool:

$ curl -i -H "Accept: application/json" |ocal host: 8080/ books/1
{"id":1,"title":"The Stand"}

Thisworks thanks to Grails' Content Negotiation features.

Y ou can create a new resource by issuing a rost request:

$ curl -i -X POST -H "Content-Type: application/json" -d '{"title":"Al ong Cane A Spider"}"' |ocal host: 8080/ books
HTTP/ 1.1 201 Created
Server: Apache-Coyote/1.1

Updating can be done with a rur request:

$ curl -i -X PUT -H "Content-Type: application/json" -d '{"title":"Along Cane A Spider"}"' |ocal host: 8080/ books/1
HTTP/ 1.1 200 K
Server: Apache-Coyote/1.1

Finally aresource can be deleted with peLere request:

$ curl -i -X DELETE | ocal host: 8080/ books/ 1
HTTP/ 1.1 204 No Content

http://localhost:8080/books/1
http://localhost:8080/books/1.json

Server: Apache-Coyote/1.1

Asyou can see, the resour ce transformation enables al of the HTTP method verbs on the
resource. Y ou can enable only read-only capabilities by setting the r eadoni y attribute to true:

inport grails.rest.*

@Resource(uri="/books', readOnly=true)
class Book {

}

In this case post, pur and oeLete requests will be forbidden.

9.2 Mapping to REST resources

If you prefer to keep the declaration of the URL mapping in your uri mappi ngs. gr oovy file then
simply removing the uri attribute of the resour ce transformation and adding the following
lineto ur Mappi Ngs. gr oovy will suffice:

"/ books" (resources: "book")

Extending your API to include more end points then becomes trivial:

"/ books" (resources: "book") {
"/ publisher"(controller:"publisher", method:"GET")

}

The above example will expose the URI / books 1/ publ i sher .

A more detailed explanation on creating RESTful URL mappings can be found in the URL
M appings section of the user guide.

9.3 Linking to REST resources from GSP pages

The1ink tag offers an easy way to link to any domain class resource:

<g:link resource="${book}">M/ Link</g:link>

However, currently you cannot use g:link to link to the DELETE action and most browsers
do not support sending the DELETE method directly.

The best way to accomplish thisis to use aform submit:

<form action="/book/2" nethod="post">
<i nput type="hi dden" nane="_net hod" val ue="DELETE"/>
</ fornp

Grails supports overriding the request method via the hidden _ret hod parameter. Thisis for
browser compatibility purposes. Thisis useful when using restful resource mappings to

create powerful web interfaces. To make alink fire this type of event, perhaps capture all
click eventsfor links with a dat a- met hoa attribute and issue a form submit via JavaScript.

9.4 Versioning REST resour ces

A common requirement with a REST AP is to expose different versions at the same time.
There are afew ways this can be achieved in Grails.

Versioning using the URI

A common approach isto use the URI to version APIs (although this approach is
discouraged in favour of Hypermedia). For example, you can define the following URL

mappings:

"/ books/v1"(resources: "book", nanespace:'vl')
"/ books/v2"(resources: "book", nanespace:'v2')

That will match the following controllers:
package nyapp. vl
cl ass BookController

static namespace = 'v1'
}

package nyapp.v2

-~

cl ass BookController
static nanmespace = 'v2
}

-~

This approach has the disadvantage of requiring two different URI namespaces for your
API.

Versioning with the Accept-Version header

As an adternative Grails supports the passing of an accept - ver si on header from clients. For
example you can define the following URL mappings:

"/ books"(version:'1.0', resources:"book", nanespace:'vl')
"/ books" (version:'2.0', resources:"book", nanespace:'v2')

Then in the client simply pass which version you need using the accept - ver si on header:

$ curl -i -H "Accept-Version: 1.0" -X GET http://]ocal host: 8080/ books
Versioning using Hypermedia/ Mime Types

Another approach to versioning is to use Mime Type definitions to declare the version of
your custom media types (see the section on "Hypermedia as the Engine of Application
State" for more information about Hypermedia concepts). For example, in appl i cati on. gr oovy
you can declare a custom Mime Type for your resource that includes a version parameter
(the'v' parameter):
grails.mnme.types = |

all: '*/*

book: "application/vnd. books. org. book+j son; v=1. 0",
bookv2: "application/vnd. books. org. book+j son; v=2. 0",

Itiscritical that place your new mime types after the 'all' Mime Type because if the
Content Type of the request cannot be established then the first entry in the map is used for
the response. If you have your new Mime Type at the top then Grails will alwaystry and
send back your new Mime Typeif the requested Mime Type cannot be established.

Then override the renderer (see the section on " Customizing Response Rendering” for more
information on custom renderers) to send back the custom Mime Typein
grail s-app/ conf/spring/resourses. groovy.

inport grails.rest.render.json.*
inport grails.web.mnme. *

beans = {
bookRender er V1(JsonRender er, myapp.v1. Book, new M meType("application/vnd. books. org. book+j son",
bookRender er V2(JsonRender er, myapp.v2. Book, new M meType("application/vnd. books. org. book+j son",
}

[v:"
[v

1
"2.

0]
4

]

)
)

)
)

Then update the list of acceptable response formats in your controller:

cl ass BookControl |l er extends Restful Controller {
static responseFormats = ['json', 'xm', 'book', 'bookv2']

...
}

Then using the accept header you can specify which version you need using the Mime Type:

$ curl -i -H "Accept: application/vnd.books. org. book+json;v=1.0" -X GET http://|ocal host: 8080/ books

9.5 Implementing REST controllers

The resour ce transformation is a quick way to get started, but typically you’'ll want to
customize the controller logic, the rendering of the response or extend the API to include
additional actions.

9.5.1 Extending the RestfulController super class

The easiest way to get started doing so is to create a new controller for your resource that
extendsthe graiis. rest. Restful controller SUPEr class. For example:

cl ass BookControl |l er extends Restful Controll er<Book> {
static responseFormats = ['json', 'xm"']
BookController() {
super (Book)
}

}

To customize any logic you can just override the appropriate action. The following table
provides the names of the action names and the URIs they map to:

HTTP Method URI Controller Action
GET /books index

GET /books/create Create

POST /books save

GET /books/${ id} show

GET /books/${ id} /edit edit

PUT /books/¥{id} update

DELETE /books/¥{ id} delete

Thecreate and edit actions are only needed if the controller exposes an HTML interface.

As an example, if you have a nested resource then you would typically want to query both

the parent and the child identifiers. For example, given the following URL mapping:

"/aut hors"(resources:'author') {
"/ books" (resources: ' book')
}

Y ou could implement the nested controller as follows:

cl ass BookControl |l er extends Restful Controller {
static responseFormats = ['json', 'xm"']
BookController() {
super (Book)

@verride
protected Book queryFor Resource(Serializable id) {
Book. where {
id == id & author.id == parans. authorld

}.find()
}

The example above subclasses rest ful cont rol 1 er @and overrides the protected quer yFor Resour ce
method to customize the query for the resource to take into account the parent resource.

Customizing Data Binding In A RestfulController Subclass

The Restful Controller class contains code which does data binding for actions like save and
updat e. The class defines a get mj ect ToBi nd() method which returns a value which will be used
as the source for data binding. For example, the update action does something like this...

class Restful Controller<T> {

def update() {
T instance = // retrieve instance fromthe database...

i nstance. properties = get Obj ect ToBi nd()

...
}

...
}

By default the get aj ect Tosi nd() method returns the request object. When the r equest 0bject is
used as the binding source, if the request has a body then the body will be parsed and its
contents will be used to do the data binding, otherwise the request parameters will be used to
do the data binding. Subclasses of RestfulController may override the get aj ect Tosi nd()
method and return anything that is avalid binding source, including aMap or a
DataBindingSource. For most use cases binding the request is appropriate but the

get vj ect Togi nd() Method allows for changing that behavior where desired.

Using custom subclass of RestfulController with Resour ce annotation
Y ou can also customize the behaviour of the controller that backs the Resource annotation.

The class must provide a constructor that takes a domain class as its argument. The second
constructor is required for supporting Resource annotation with readOnly=true.

Thisis atemplate that can be used for subclassed Restful Controller classes used in Resource
annotations:

cl ass Subcl assRestful Control |l er<T> extends Restful Controller<T> {
Subcl assRest ful Control | er (C ass<T> domai nCl ass) {
t hi s(donmi nd ass, false)
}

Subcl assRest ful Control | er (4 ass<T> domai nd ass, bool ean readOnly) {

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Map.html
http://docs.grails.org/6.1.2/api/grails/databinding/DataBindingSource.html

super (dongi nCl ass, readOnly)
}
}

Y ou can specify the super class of the controller that backs the Resource annotation with the
super d ass attribute.

inmport grails.rest.*

@Resource(uri="/books', superC ass=Subcl assRestful Controller)
cl ass Book {

String title

static constraints = {
title blank:false
}
}

9.5.2 Implementing REST Controllers Step by Step

If you don’t want to take advantage of the features provided by the rest ful control 1 er SUpEr
class, then you can implement each HTTP verb yourself manually. Thefirst step isto create
acontroller:

$ grails create-controller book

Then add some useful imports and enable readOnly by default:

inport grails.gormtransactions.*
inport static org.springfranmework. http. HtpStatus.*
inmport static org.springfranmework. http. H t pMet hod. *

@ransactional (readOnly = true)
cl ass BookController {

}

Recall that each HTTP verb matches a particular Grails action according to the following
conventions:

HTTP Method URI Controller Action
GET /books index

GET /books/${ id} show

GET /books/create create

GET /books/${ id} /edit edit

POST /books save

PUT /books/${id} update

DELETE Ibooks/${id} delete

Thecreate and edit actions are already required if you plan to implement an HTML
interface for the REST resource. They are there in order to render appropriate HTML
formsto create and edit aresource. They can be discarded if that is not a requirement.

The key to implementing REST actions is the respond method introduced in Grails 2.3. The
respond Method tries to produce the most appropriate response for the requested content type
(JSON, XML, HTML etc.)

I mplementing the 'index' action

For example, to implement the i ndex action, simply call the respond method passing the list of
objects to respond with:

def index(Integer max) {
parans. max = Math.nmin(max ?: 10, 100)
respond Book. |ist(parans), nodel:[bookCount: Book.count()]

}

Note that in the above example we a so use the mdel argument of the respond method to
supply thetotal count. Thisisonly required if you plan to support pagination via some user
interface.

The responda method will, using Content Negotiation, attempt to reply with the most
appropriate response given the content type requested by the client (viathe ACCEPT header
or file extension).

If the content type is established to be HTML then a model will be produced such that the
action above would be the equivalent of writing:

def index(Ilnteger max) {

paranms. max = Math. m n(max ?: 10, 100)

[bookLi st: Book. |ist(parans), bookCount: Book.count()]
}

By providing anindex. gsp file you can render an appropriate view for the given model. If the
content type is something other than HTML then the respond method will attempt to lookup
an appropriate grai i s. rest . render . Render er iNStance that is capable of rendering the passed
object. Thisis done by inspecti ng the grails.rest.render. RendererRegistry.

By default there are already renderers configured for JSON and XML, to find out how to
register a custom renderer see the section on " Customizing Response Rendering".

I mplementing the 'show' action

The show action, which is used to display and individua resource by id, can be implemented
in one line of Groovy code (excluding the method signature):

def show(Book book) {
respond book
}

By specifying the domain instance as a parameter to the action Grails will automatically
attempt to lookup the domain instance using the i « parameter of the request. If the domain
instance doesn’t exist, then nui1 will be passed into the action. The respond method will return
a404 error if null is passed otherwise once again it will attempt to render an appropriate
response. If the format isHTML then an appropriate model will produced. The following
action isfunctionally equivalent to the above action:

def show(Book book) {
if(book == null) {
render status: 404

el se {

return [book: book]

}
}

I mplementing the 'save' action

Thesave action creates new resource representations. To start off, simply define an action
that accepts aresource as the first argument and mark it as transacti onai With the
grails.gormtransactions. Transacti onal transform:

@r ansact i onal
def save(Book book) {

}

Then the first thing to do is check whether the resource has any validation errors and if so
respond with the errors:

i f(book. hasErrors()) {
respond book.errors, view'create'

el se {

}

In the case of HTML the 'create’ view will be rendered again so the user can correct the
invalid input. In the case of other formats (JSON, XML etc.), the errors object itself will be
rendered in the appropriate format and a status code of 422 (UNPROCESSABLE_ENTITY)
returned.

If there are no errors then the resource can be saved and an appropriate response sent:

book. save flush:true
wi t hFor mat {
htm {

flash. message = nessage(code: 'default.created. message', args: [nessage(code: 'book.|abel', default: '

redirect book
}
"*'" { render status: CREATED }
}

In the case of HTML aredirect isissued to the originating resource and for other formats a
status code of 201 (CREATED) is returned.

I mplementing the 'update’ action

The updat e action updates an existing resource representation and is largely similar to the save
action. First define the method signature:

@ransact i onal
def updat e(Book book) {

}

If the resource exists then Grails will load the resource, otherwise null is passed. In the case
of null, you should return a 404:

i f(book == null) {
render status: NOT_FOUND

el se {

}

Then once again check for errors validation errors and if so respond with the errors:

i f (book. hasErrors()) {
respond book.errors, view 'edit"'
}

el se {

}

In the case of HTML the 'edit’ view will be rendered again so the user can correct the invalid
input. In the case of other formats (JSON, XML etc.) the errors object itself will be rendered
in the appropriate format and a status code of 422 (UNPROCESSABLE_ENTITY) returned.

If there are no errors then the resource can be saved and an appropriate response sent:

book. save flush:true
wi t hFor mat {
htm {

flash. message = nmessage(code: 'default.updated. nessage', args: [nessage(code: 'book.label', default:

redi rect book

"*' { render status: OK}

}

In the case of HTML aredirect isissued to the originating resource and for other formats a
status code of 200 (OK) is returned.

I mplementing the 'delete’ action

The del et e action deletes an existing resource. The implementation is largely similar to the
updat e action, except the dei ete() method is called instead:

book. del ete flush:true
wi t hFor mat {
htm {

flash. message = nessage(code: 'default.del eted. nessage', args: [nessage(code: 'Book.|abel', default:

redirect action:"index", nethod:"GET"

}
"*'{ render status: NO _CONTENT }
}

Notice that for an HTML response aredirect isissued back to thei ndex action, whilst for
other content types aresponse code 204 (NO_CONTENT) is returned.

9.5.3 Generating a REST controller using scaffolding

To see some of these concepts in action and help you get going, the Scaffolding plugin,
version 2.0 and above, can generate a REST ready controller for you, simply run the
command:

$ grails generate-controller <<Domain C ass Name>>

9.6 Calling REST Serviceswith HttpClient

Calling Grails REST services - aswell asthird-party services - is very straightforward using
the Micronaut HTTP Client. ThisHTTP client has both a low-level API and a higher level
AOP-driven API, making it useful for both ssmple requests as well as building declarative,
type-safe API layers.

To use the Micronaut HTTP client you must have the i cronaut - ht t p- cli ent dependency on
your classpath. Add the following dependency to your bui i d. gradi e file.

build.gradle

i npl ementation 'io.nicronaut:ncronaut-http-client’

L ow-level API

The HttpClient interface forms the basis for the low-level API. Thisinterfaces declares

' Book'

' Book'

http://plugins.grails.org/plugin/grails/scaffolding
https://docs.micronaut.io/latest/guide/index.html#httpClient
https://docs.micronaut.io/latest/api/io/micronaut/http/client/HttpClient.html

methods to help ease executing HT TP requests and receive responses.

The majority of the methodsin the wtpaient interface returns Reactive Streams Publisher
instances, and a sub-interface called RxHttpClient is included that provides a variation of
the HttpClient interface that returns RxJava Flowable types. When using e tpaient ina
blocking flow, you may wish to call t o8l ocki ng() t0 return an instance of BlockingHttpClient.

There are afew ways by which you can obtain areference to a HttpClient. The most ssimple
way is using the create method

Creating an HTTP client

Li st <Al bum> searchWt hApi (String searchTerm {
String baseUl = "https://itunes. apple.com"

HitpCient client = HitpCOient.create(baseUl.toURL()).toBlocking() (1)

Ht t pRequest request = Htt pRequest. GET("/search?lim t=25&redi a=nusi c&entity=al bum& er m=${ searchTern}")
Ht t pResponse<String> resp = client.exchange(request, String)
client.close() (2)

String json = resp. body()

Qoj ect Mapper obj ect Mapper = new Obj ect Mapper () (3)

obj ect Mapper. confi gure(Deserial i zati onFeat ure. FAI L_ON_UNKNOMNN_PROPERTI ES, fal se)
SearchResul t searchResult = object Mapper.readVal ue(json, SearchResult)
searchResul t.results

}

Create anew instance of 1 tpaient With the create method, and convert to an instance of
Bl ocki ngHt t pdl i ent Wwith t oBI ocki ng() ,

2 The client should be closed using the ci ose Mmethod to prevent thread leaking.
3 Jackson's ObjectMapper API can be used to map the raw JSON to POGOs, in this case

Sear chResul t

Consult the Http Client section of the Micronaut user guide for more information on using
thertpaient low-level API.

Declar ative API

A declarative HTTP client can be written by adding the a i ent annotation to any interface or
abstract class. Using Micronaut’s AOP support (see the Micronaut user guide section on
Introduction Advice), the abstract or interface methods will be implemented for you at
compilation time as HTTP calls. Declarative clients can return data-bound POGOs (or
POJOs) without requiring special handling from the calling code.

package exanple.grails
import io.mcronaut. http.annotation. Get
inport io.mcronaut.http.client.annotation.dient
@ ient("https://start.grails.org")
interface Gail sAppForgeC ient {
@et ("/{version}/profiles")
Li st <Map> profiles(String version)

}

Note that HTTP client methods are annotated with the appropriate HT TP method, such as
@et OF @ost .

To use aclient like the one in the above example, simply inject an instance of the client into
any bean using the @ut ovi red annotation.

@\t ow red G ail sAppForgeC ient appForgedient

Li st<Map> profiles(String grailsVersion) {
respond appForgeCd ient.profiles(grailsVersion)
}

https://docs.micronaut.io/latest/api/io/micronaut/http/client/BlockingHttpClient.html
https://docs.micronaut.io/latest/api/io/micronaut/http/client/HttpClient.html
https://docs.micronaut.io/latest/api/io/micronaut/http/client/HttpClient.html#create-java.net.URL-
https://fasterxml.github.io/jackson-databind/javadoc/2.9/com/fasterxml/jackson/databind/ObjectMapper.html
https://docs.micronaut.io/latest/guide/index.html#lowLevelHttpClient
https://docs.micronaut.io/latest/guide/index.html
https://docs.micronaut.io/latest/api/io/micronaut/http/client/annotation/Client.html
https://docs.micronaut.io/latest/guide/index.html#introductionAdvice

For more details on writing and using declarative clients, consult the Http Client section of
the Micronaut user guide.

9.7 The REST Profile

Since Grails 3.1, Grails supports atailored profile for creating REST applications that
provides a more focused set of dependencies and commands.

To get started with the REST profile, create an application specifying rest-api as the name of
the profile:

$ grails create-rest-api ny- api
Thiswill create anew REST application that provides the following features:

® Default set of commands for creating and generating REST endpoints

® Defaultsto using JSON views for rendering responses (see the next section)

® Fewer pluginsthan the default Grails plugin (no GSP, no Asset Pipeline, nothing HTML
related)

Y ou will notice for example in the grai 1 s- app/ vi ews directory that there are +. gson files for
rendering the default index page and as well as any 404 and 500 errors.

If you issue the following set of commands:

$ grails create-donuin-class ny. api.Book
$ grails generate-all my.api.Book

Instead of CRUD HTML interface a REST endpoint is generated that produces JSON
responses. In addition, the generated functional and unit tests by default test the REST
endpoint.

9.8 JSON Views

As mentioned in the previous section the REST profile by default uses JSON viewsto
render JSON responses. These play asimilar role to GSP, but instead are optimized for
outputing JSON responses instead of HTML.

Y ou can continue to separate your application in terms of MV C, with the logic of your
application residing in controllers and services, whilst view related matters are handled by
JSON views.

JSON views also provide the flexibility to easily customize the JSON presented to clients
without having to resort to relatively complex marshalling libraries like Jackson or Grails
marshaller API.

Since Grails 3.1, JSON views are considered by the Grails team the best way to present
JSON output for the client, the section on writing custom marshallers has been removed
from the user guide. If you are looking for information on that topic, see the Grails 3.0.x

guide.

9.8.1 Getting Started

If you are using the REST application, then the JISON views plugin will already be included

https://docs.micronaut.io/latest/guide/index.html#clientAnnotation
https://docs.micronaut.io/latest/guide/index.html
http://grails.github.io/grails-doc/3.0.x/guide/webServices.html#objectMarshallers
http://grails.github.io/grails-doc/3.0.x/guide/webServices.html#objectMarshallers

and you can skip the remainder of this section. Otherwise you will need to modify your
bui I d. gradi e tO include the necessary plugin to activate JSON views:

impl ementation 'org.grails.plugins:views-json:1.0.0" // or whatever is the |latest version

The source code repository for JSON views can be found on Github if you are looking for
more documentation and contributions

In order to compile JSON views for production deployment you should aso activate the
Gradle plugin by first modifying the bui 1 dscript block:

buil dscript {
débendenci es {

cI ésspat h "org.grails.plugins:views-gradle:1.0.0"
}
}

Then apply the org. grai i s. pl ugi ns. vi ews- j son Gradle plugin after any Grails core gradle
plugins:

ébbl y plugin: "org.grails.grails-web"
apply plugin: "org.grails.plugins.views-json"

Thiswill add a conpi 1 easonvi ews task to Gradle, which isinvoked prior to creating the
production JAR or WAR file.

9.8.2 Creating JSON Views

JSON views go into the grai I s- app/ vi ews directory and end with the . gson suffix. They are
regular Groovy scripts and can be opened in any Groovy editor.

Example JSON view:

json. person {
name "bob"
}

To open them in the Groovy editor in Intellij IDEA, double click on the file and when
asked which file to associate it with, choose "Groovy"

The above JSON view produces:

{"person": {"name": "bob"}}

Thereisanimplicit j son variable which is an instance of StreamingJsonBuilder.

Example usages:

json(1,2,3) == "[1,2,3]"

json { name "Bob" } == '{"nane":"Bob"}'

json([1,2,3]) { nit } =="[{"n":1},{"n":2},{"n":3}]"

Refer to the APl documentation on StreamingJsonBuilder for more information about what
ispossible.

9.8.3 JSON View Templates

Y ou can define templates starting with underscore _. For example given the following
template cdled _person. gson.

https://github.com/grails/grails-views
http://docs.groovy-lang.org/latest/html/api/groovy/json/StreamingJsonBuilder.html
http://docs.groovy-lang.org/latest/html/api/groovy/json/StreamingJsonBuilder.html

nodel {
Person person
}

json {

name person. name
age person. age

Y ou can render it with aview as follows;

nmodel {
Famly famly

json {
nanme famly.father.nane
age famly.father.age
ol dest Chil d g.render (tenpl ate: "person”, nodel:[person: famly.children.max { Person p -> p.age }])
children g.render(tenplate:"person”, collection: famly.children, var:'person')

}

Alternatively for a more concise way to invoke templates, using the tmpl variable:
nmodel {
Famly famly

json {
name famly.father.nane
age family.father.age
ol destChild tnpl.person(famly.children.max { Person p -> p.age }])
children tnpl.person(fanmly.children)

9.8.4 Rendering Domain Classes with JSON Views

Typically your model may involve one or many domain instances. JSON views provide a
render method for rendering these.

For example given the following domain class:

cl ass Book {
String title

And the following template:

nodel {
Book book
}

json g.render (book)
The resulting output is:
{id:1, title:"The Stand"}
Y ou can customize the rendering by including or excluding properties:

json g.render (book, [includes:['title']])

Or by providing a closure to add additional JSON output:

json g.render (book) {
pages 1000

9.8.5 JSON Views by Convention

There are afew useful conventions you can follow when creating JSON views. For example
if you have adomain class called sook, then creating a template located at
grai | s-app/ vi ews/ book/ _book. gson @nd using the respond method will result in rendering the

template:

def show(Long id) {
respond Book. get (i d)
}

In addition if an error occurs during validation by default Grails will try to render atemplate
called grai I s- app/ vi ews/ book/ _errors. gson, Otherwise it will try to render
grails-app/views/errors/ _errors. gson if the former doesn’t exist.

Thisis useful because when persisting objects you can respond With validation errors to
render these af orementioned templ ates:

@r ansact i onal
def save(Book book) {
if (book.hasErrors()) {
transacti onStat us. set Rol | backOnl y()
respond book. errors

}
el se {
/1 valid object

}
}

If avalidation error occurs in the above examplethe grail s-app/ vi ews/ book/ _errors. gson
template will be rendered.

For more information on JSON views (and Markup views), see the JSON Views user guide.

9.9 Customizing Response Rendering

If you are looking for amore low-level API and JSON or Markup views don’t suite your
needs then you may want to consider implementing a custom renderer.

9.9.1 Customizing the Default Renderers

The default renderers for XML and JSON can be found inthe grai i s. rest. render. xnt and
grails.rest.render.json packages respectively. These use the Grails converters (
grails.converters. XM aNnd grails. converters. JSO\I) by default for response renderi ng.

Y ou can easily customize response rendering using these default renderers. A common
change you may want to make isto include or exclude certain properties from rendering.

Including or Excluding Properties from Rendering

As mentioned previously, Grails maintains aregistry of graiis. rest.render. Renderer iNStances.
There are some default configured renderers and the ability to register or override renderers
for agiven domain class or even for a collection of domain classes. To include a particular
property from rendering you need to register a custom renderer by defining abean in

grail s-app/ conf/spring/resources. groovy.

inmport grails.rest.render.xm.*
beans = {
bookRender er (Xm Renderer, Book) ({
includes = ['title']
}

}

The bean name is not important (Grails will scan the application context for all registered
renderer beans), but for organizational and readability purposesit is recommended you
name it something meaningful.

To exclude a property, the exci udes property of the xm renderer class can be used:

http://views.grails.org/latest/

import grails.rest.render.xm .*

beans = {
bookRender er (Xm Renderer, Book) {
excludes = ['isbn']

}
}

Customizing the Converters

As mentioned previously, the default renders use the grai 1 s. converters package under the
covers. In other words, under the covers they essentially do the following:

inmport grails.converters.*

.ré.nder book as XM

/1 or render book as JSON

Why the separation between converters and renderers? Well arenderer has more flexibility
to use whatever rendering technology you chose. When implementing a custom renderer
you could use Jackson, Gson or any Java library to implement the renderer. Converters on
the other hand are very much tied to Grails own marshalling implementation.

9.9.2 Implementing a Custom Renderer

If you want even more control of the rendering or prefer to use your own marshalling
techniques then you can implement your own render er instance. For example below isa
simple implementation that customizes the rendering of the ook class:

package nyapp
inmport grails.rest.render.*
inport grails.web.nmme. MneType

cl ass BookXm Renderer extends Abstract Renderer <Book> {
BookXm Renderer () {
super (Book, [M neType. XM_, M neType. TEXT_XM.] as M neType[])
}

voi d render (Book object, RenderContext context) {
cont ext . content Type = M nmeType. XM.. nane
def xml = new groovy.xnl . Mar kupBui | der (context.witer)
xm . book(id: object.id, title:object.title)

}
}

The abst ract Render er SUpPEr class has a constructor that takes the class that it renders and the
M meType(S) that are accepted (viathe ACCEPT header or file extension) for the renderer.

To configure this renderer, S|mply add it isabean to grail s-app/ conf/spring/resources. groovy.

beans = {
bookRender er (nyapp. BookXm Render er)
}

The result will be that al sook instances will be rendered in the following format:
<book id="1" title="The Stand"/>

If you change the rendering to a completely different format like the above, then you aso
need to change the binding if you plan to support POST and PUT requests. Grails will not
automatically know how to bind data from a custom XML format to adomain class
otherwise. See the section on "Customizing Binding of Resources' for further information.

Container Renderers

http://wiki.fasterxml.com/JacksonHome
http://code.google.com/p/google-gson/

A grails.rest.render. ContainerRenderer 1S arenderer that renders responses for containers of
objects (lists, maps, collections etc.). The interface islargely the same as the render er
interface except for the addition of the get conponent Type() Method, which should return the
"contained" type. For example:

cl ass BookLi st Renderer inplenments Contai ner Renderer<Li st, Book> {
Cl ass<Li st > get Target Type() { List }
Cl ass<Book> get Conponent Type() { Book }
M meType[] getM meTypes() { [M meType. XM.] as M neType[] }
voi d render (Li st object, RenderContext context) {

}
}

9.9.3 Using GSP to Customize Rendering

Y ou can also customize rendering on a per action basis using Groovy Server Pages (GSP).
For exampl e given the show action mentioned previously:

def show(Book book) {
respond book
}

Y ou could supply ashow xni . gsp file to customize the rendering of the XML.:

<Y%dage content Type="applicati on/xm "%
<book id="${book.id}" title="${book.title}"/>

9.10 Hyper media asthe Engine of Application State

HATEOAS, an abbreviation for Hypermedia as the Engine of Application State, isa
common pattern applied to REST architectures that uses hypermedia and linking to define
the REST API.

Hypermedia (also called Mime or Media Types) are used to describe the state of a REST
resource, and linkstell clients how to transition to the next state. The format of the response
istypically JSON or XML, although standard formats such as Atom and/or HAL are
frequently used.

9.10.1 HAL Support

HAL isastandard exchange format commonly used when developing REST APIs that
follow HATEOAS principals. An example HAL document representing alist of orders can
be seen below:

"_links": {
"self": { "href": "/orders" },
"next": { "href": "/orders?page=2" }
"find": {

"href": "/orders{?id}"
"tenplated": true

"admin": [{
"href": "/adm ns/2"
"title": "Fred"

"href": "/adm ns/5"
"title": "Kate"

1
}

"currentlyProcessing": 14

"shi ppedToday": 20

" _enbedded": {

"order": [{

"_links": {

"self": { "href": "/orders/ 123" },
"basket": { "href": "/baskets/98712" }
"custoner": { "href": "/custoners/7809" }

http://en.wikipedia.org/wiki/HATEOAS
http://tools.ietf.org/html/rfc4287
http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html

"total": 30.00
"currency": "USD',
"status": "shi pped"

"_links": {
"self": { "href": "/orders/124" },
"basket": { "href": "/baskets/97213" },
"custoner": { "href": "/custoners/12369" }

¥
"total ": 20.00,

"currency": "USD',
"status": "processing"

}H
}

Exposing Resources Using HAL

To return HAL instead of regular JSON for aresource you can simply override the renderer
in grai | s-app/ conf/spring/resources. gr oovy with an instance of
grails.rest.render. hal . Hal JsonRender er (or Hal xm Renderer fOr the XML Variation):

inmport grails.rest.render. hal.*
beans = {

hal BookRender er (Hal JsonRenderer, rest.test. Book)
}

Y ou will also need to update the acceptable response formats for the resource so that the
HAL format isincluded. Not doing so will result in a406 - Not Acceptable response being
returned from the server.

This can be done by setting the f or mat s attribute of the resour ce transformation:

inmport grails.rest.*

@Resource(uri="/books', formats=['json', 'xnl', "hal'])
cl ass Book {

}

Or by updating the r esponseror mat s in the controller:
cl ass BookControl |l er extends Restful Controller {
static responseFormats = ['json', 'xm', 'hal']

...
}

With the bean in place requesting the HAL content type will return HAL:

$ curl -i -H "Accept: application/hal+json" http://|ocal host: 8080/ books/ 1

HTTP/ 1.1 200 K
Server: Apache-Coyote/1.1
Cont ent - Type: application/ hal +j son; char set =I SO 8859- 1

{
" _links": {
"self": {
"href": "http://Ilocal host: 8080/ books/ 1",
"hreflang": "en",
"type": "application/hal +j son"

b
"title": "\"The Stand\""

Touse HAL XML format simply change the renderer:

inmport grails.rest.render. hal.*
beans = {

hal BookRender er (Hal Xnml Renderer, rest.test.Book)
}

Rendering Collections Using HAL

To return HAL instead of regular JSON for alist of resources you can simply override the
renderer in grai | s-app/ conf/spring/resources. gr oovy with an instance of

grails.rest.render. hal . Hal JsonCol | ecti onRenderer .

import grails.rest.render.hal.*
beans = {

hal BookCol | ecti onRender er (Hal JsonCol | ecti onRenderer, rest.test.Book)
}

With the bean in place requesting the HAL content type will return HAL:

$ curl -i -H "Accept: application/hal+json" http://|ocal host: 8080/ books
HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Cont ent - Type: application/ hal +j son; char set =UTF- 8

Transf er - Encodi ng: chunked

Date: Thu, 17 QOct 2013 02:34: 14 GVIT

e,
"_links": {
"sel f": {
"href": "http://]ocal host: 8080/ books",
"hreflang": "en",
"type": "application/hal +j son"

I
"_enbedded": {

"book": [
{
"_links": {
"self": {
"href": "http://Iocal host: 8080/ books/ 1",
"hreflang": "en",
"type": "application/hal + son"

e
"title": "The Stand"

H
{
"_links": {
"sel f": {
"href": "http://Iocal host: 8080/ books/ 2",
"hreflang": "en",
"type": "application/hal + son"
}
"title": "Infinite Jest"
"_links": {
"sel f": {
"href": "http://Iocal host: 8080/ books/ 3",
"hreflang": "en",
"type": "application/hal +j son"

1.
"title": "Wal den"
}
]
}
}

Notice that the key associated with the list of sook Objectsin the rendered JSON iS book Which
is derived from the type of objects in the collection, namely sook. In order to customize the
value of thiskey assign avalue to the coi 1 ecti onname property on the Hai 3soncol 1 ect i onRender er
bean as shown below:

inport grails.rest.render.hal.*

beans = {
hal BookCol | ecti onRender er (Hal Col | ecti onJsonRenderer, rest.test.Book) {
col | ecti onName = 'publications'
}
}

With that in place the rendered HAL will look like the following:

$ curl -i -H "Accept: application/hal+json" http://I|ocal host: 8080/ books
HTTP/ 1.1 200 OK

Server: Apache-Coyote/1.1

Cont ent - Type: application/ hal +j son; char set =UTF- 8

Transfer - Encodi ng: chunked

Date: Thu, 17 Cct 2013 02: 34: 14 GMVIT

"_links": {

"sel f": {
"href": "http://]ocal host: 8080/ books",
"hreflang": "en",
"type": "application/hal +j son"

},
"_enbedded": {
"publications": [

"_links": {
"sel f": {
"href": "http://Iocal host: 8080/ books/ 1",
"hreflang": "en",
"type": "application/hal + son"

e
"title": "The Stand"

"_links": {
"sel f": {
"href": "http://Iocal host: 8080/ books/ 2",
"hreflang": "en",
"type": "application/hal +j son"
"title": "Infinite Jest"
b
{
"_links": {
"self": {
"href": "http://Iocal host: 8080/ books/ 3",
"hreflang": "en",
"type": "application/hal +j son"

}
"title": "Wl den"
}
]
}
}

Using Custom Media/ Mime Types

If you wish to use a custom Mime Type then you first need to declare the Mime Typesin
grail s-app/ conf/application. groovy.
grails.mnme.types = [

all: R

book: "appl | cation/vnd. books. or g. book+j son",
bookLi st: "application/vnd. books. org. bookl i st +j son",

Itiscritical that place your new mime types after the 'all' Mime Type because if the
Content Type of the request cannot be established then the first entry in the map is used for
the response. If you have your new Mime Type at the top then Grails will alwaystry and
send back your new Mime Type if the requested Mime Type cannot be established.

Then override the renderer to return HAL using the custom Mime Types:

inport grails.rest.render.hal.*
import grails.web.nine. *

beans = {

hal BookRender er (Hal JsonRenderer, rest.test.Book, new M neType("application/vnd. books. org. book+j son"

v [vi"1.0"])

hal BookLi st Render er (Hal JsonCol | ecti onRenderer, rest.test.Book, new M neType("application/vnd. books. org. bookl i st

}

In the above example the first bean definesa HAL renderer for a single book instance that
returnsaMime Type Of appl i cati on/ vnd. books. or g. book+ son. The second bean defines the
Mime Type used to render a collection of books (in this case

appl i cation/vnd. books. or g. bookl i st +j son).

appl i cati on/ vnd. books. or g. bookl i st +j son 1S @n example of amedia—range(
http://www.w3.org/Protocol s/rfc2616/rfc2616.html - Header Field Definitions). This

http://www.w3.org/Protocols/rfc2616/rfc2616.html

example uses entity (book) and operation (list) to form the media-range values but in
reality, it may not be necessary to create a separate Mime type for each operation. Further,
it may not be necessary to create Mime types at the entity level. See the section on
"Versioning REST resources" for further information about how to define your own Mime

types.

With thisin place issuing arequest for the new Mime Type returns the necessary HAL :

$ curl -i -H "Accept: application/vnd. books. org. book+j son" http://I ocal host: 8080/ books/ 1

HTTP/ 1.1 200 K
Server: Apache-Coyote/1.1
Cont ent - Type: application/vnd. books. org. book+j son; char set =I SO 8859- 1

{
"_links": {
"sel f": {
"href": "http://I|ocal host: 8080/ books/ 1",
"hreflang": "en",
"type": "application/vnd. books. org. book+j son"

I
"title": "\"The Stand\""
}

Customizing Link Rendering

An important aspect of HATEOAS is the usage of links that describe the transitions the
client can use to interact with the REST API. By default the wal ssonrender er Will
automatically create links for you for associations and to the resource itself (using the "self"
relationship).

However you can customize link rendering using the i nk method that is added to al domain
classes annotated with grai 1 s. rest. Resource O a@ny class annotated With graiis. rest. Li nkabl e.
For example, the show action can be modified as follows to provide anew link in the
resulting output:

def show(Book book) {
book.link rel:"'publisher', href: g.createLink(absolute: true, resource:"publisher", parans:[bookld: book.id])
respond book

}

Which will result in output such as:

{
"_links": {
"sel f": {
"href": "http://local host: 8080/ books/ 1",
"hreflang": "en",
"type": "application/vnd. books. org. book+j son"

}
"publisher": {

"href": "http://Iocal host: 8080/ books/ 1/ publ i sher",
"hreflang": "en"

}

I
"title": "\"The Stand\""
}

The i nk method can be passed named arguments that match the properties of the
grails.rest.Link class.

9.10.2 Atom Support

Atom is another standard interchange format used to implement REST APIs. An example of
Atom output can be seen below:

<?xm version="1.0" encodi ng="utf-8"?>
<feed xm ns="http://ww. w3. or g/ 2005/ At on{ >

<title>Exanpl e Feed</title>

http://tools.ietf.org/html/rfc4287

<link href="http://exanple.org/"/>
<updat ed>2003- 12- 13T18: 30: 02Z</ updat ed>
<aut hor >
<name>John Doe</ name>
</ aut hor >
<i d>ur n: uui d: 60a76c80- d399- 11d9- b93C- 0003939e0af 6</i d>

<entry>
<title>At om Power ed Robots Run Ampk</title>
<link href="http://exanple.org/2003/12/13/at onD3"/ >
<i d>ur n: uui d: 1225c695- cf b8- 4ebb- aaaa- 80da344ef aba</i d>
<updat ed>2003- 12- 13T18: 30: 02Z</ updat ed>
<summar y>Sone text. </ sunmmary>
</entry>

</ feed>

To use Atom rendering again simply define a custom renderer:

inmport grails.rest.render.atom*
beans = {
hal BookRender er (At onRenderer, rest.test. Book)
hal BookLi st Render er (At onCol | ecti onRenderer, rest.test.Book)

9.10.3Vnd.Error Support

Vnd.Error is a standardised way of expressing an error response.

By default when a validation error occurs when attempting to POST new resources then the
errors object will be sent back allow with a 422 respond code:

$ curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X POST -d "" http://]ocal host: 8080/ bo
HTTP/ 1.1 422 Unprocessable Entity

Server: Apache-Coyote/ 1.1
Cont ent - Type: application/json;charset=] SO 8859-1

"errors": [

{

"object": "rest.test.Book",

“field": "title",

"rejected-value": null,

"message": "Property [title] of class [class rest.test.Book] cannot be null"
}

]
}

If you wish to change the format to Vnd.Error then simply register

grails.rest.render.errors. VndError JsonRender er DEAN IN grai | s-app/ conf/ spring/ resour ces. groovy:

beans = {
vndJsonError Renderer(grails.rest.render.errors. VndErrorJsonRender er)
/1 for Vnd.Error XWM. fornat
vndXm Error Renderer (grails.rest.render.errors. VndError Xm Renderer)

Then if you alter the client request to accept Vnd.Error you get an appropriate response:

$ curl -i -H "Accept: application/vnd.error+json,application/json" -H "Content-Type: application/json" -X POST -d "
HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Cont ent - Type: application/vnd. error+json; charset =l SO 8859- 1

[

{
"l ogref": "book.null able,
"message": "Property [title] of class [class rest.test.Book] cannot be null",
"_links": {
"resource":
"href": "http://local host:8080/rest-test/books"
}
}
}

9.11 Customizing Binding of Resour ces

https://github.com/blongden/vnd.error

The framework provides a sophisticated but simple mechanism for binding REST requests
to domain objects and command objects. One way to take advantage of thisisto bind the
request property in acontroller the properties 0f @adomain class. Given the following XML as
the body of the request, the creat eook action will create a new sook and assign "The Stand” to
thetitie property and " Stephen King" to the aut hor nare property.

<?xm version="1.0" encodi ng="UTF-8"?>
<book>

<title>The Stand</title>

<aut hor Name>St ephen Ki ng</ aut hor Nanme>
</ book>

cl ass BookController {

def createBook() {
def book = new Book()
book. properties = request

...
}

Command objects will automatically be bound with the body of the request:

cl ass BookController {
def creat eBook(BookCommand book) {

...
}

cl ass BookConmand {
String title
String aut hor Nane
}

If the command object type is adomain class and the root element of the XML document
contains an i ¢ attribute, thei ¢ value will be used to retrieve the corresponding persistent
instance from the database and then the rest of the document will be bound to the instance.
If no corresponding record is found in the database, the command object reference will be
null.

<?xm version="1.0" encodi ng="UTF-8"?>
<book id="42">

<title>Wal den</title>

<aut hor Name>Henry Davi d Thor eau</ aut hor Nane>
</ book>

cl ass BookController {
def updat eBook(Book book) {
/1 The book will have been retrieved fromthe database and updated
/1 by doing something like this:
/1
/1 book == Book.get('42")
/1 if(book !'= null) {
11 book. properties = request
11}
/1
/1 the code above represents what the framework will
/'l have done. There is no need to wite that code.

...
}

The data binding depends on an instance of the DataBindingSource interface created by an
instance of the DataBindingSourceCreator interface. The specific implementation of

Dat aBi ndi ngSour ceCr eat or will be selected based on the cont ent Type of the requeﬁt. Several
implementations are provided to handle common content types. The default
implementations will be fine for most use cases. The following table lists the content types
which are supported by the core framework and which pat asi ndi ngsour cecr eat or
implementations are used for each. All of the implementation classes arein the

org. grails. dat abi ndi ng. bi ndi ngsour ce package

http://docs.grails.org/6.1.2/api/grails/databinding/DataBindingSource.html
http://docs.grails.org/6.1.2/api/org/grails/databinding/bindingsource/DataBindingSourceCreator.html

Content Type(s) Bean Name DataBindingSour ceCr eator
Impl.

application/xml,

text/xml xmiDataBindingSourceCreator ~ XmlDataBindingSourceCreator

application/json,

text/json jsonDataBindingSourceCreator JsonDataBindingSourceCreator

application/hal+json halJsonDataBindingSourceCreator Hal JsonDataBindingSourceCreator

application/hal+xml hal XmlDataBindingSourceCreator Hal X ml DataBindingSourceCreator

In order to provide your own pat agi ndi ngsour cecreat or fOr any of those content types, write a
class which implements pat asi ndi ngsour cecreat or @Nd register an instance of that classin the
Spring application context. If you are replacing one of the existing helpers, use the
corresponding bean name from above. If you are providing a helper for a content type other
than those accounted for by the core framework, the bean name may be anything that you
like but you should take care not to conflict with one of the bean names above.

The pat aBi ndi ngsour cecr eat or iNterface defines just 2 methods:

package org. grails. databi ndi ng. bi ndi ngsource

inmport grails.web.mne. MnmeType
inport grails.databindi ng. Dat aBi ndi ngSour ce

*

A factory for DataBi ndi ngSource instances

/

@ince 2.3
@ee Dat aBi ndi ngSour ceRegi stry
@ee Dat aBi ndi ngSour ce

* % ok k% %

*
*/
interface DataBi ndi ngSourceCreator {
/**
* “return All of the {"link MneType} supported by this hel per
*/
M meType[] get M neTypes()
*

Creates a DataBi ndi ngSource suitabl e for binding bindingSource to bindi ngTarget

/

@aram m neType a mnme type

@ar am bi ndi ngTarget the target of the data binding

@ar am bi ndi ngSour ce the val ue bei ng bound

* @eturn a DataBi ndi ngSource

*/

Dat aBi ndi ngSour ce creat eDat aBi ndi ngSour ce(M neType nmi neType, Cbject bindi ngTarget, Cbject bindi ngSource)

* % ok k% *

}

AbstractRequestBodyDataBindingSourceCreator is an abstract class designed to be
extended to simplify writing custom pat asi ndi ngsour cecr eat or Classes. Classes which extend
Abst r act Request bodyDat abi ndi ngSour ceCr eat or need to |mplement amethod named

cr eat eBi ndi ngSour ce which accepts an I nput Streamas an argument and returns a pat agi ndi ngSour ce
aswell asimplementing the get M meTypes method described in the pat asi ndi ngsour cear eat or
interface above. The i nput stream argument tO cr eat eBi ndi ngSour ce provid% access to the bOdy
of the request.

The code below shows a simple implementation.

http://docs.grails.org/6.1.2/api/org/grails/web/databinding/bindingsource/AbstractRequestBodyDataBindingSourceCreator.html

src/main/groovy/com/demo/myapp/databi nding/MyCustomDataBindingSourceCreator.groovy
package com denp. nyapp. dat abi ndi ng

import grails.web.mne. M nmeType

i nport grails.databindi ng. Dat aBi ndi ngSour ce

i mport org...databindi ng. Si npl eMapDat aBi ndi ngSour ce

i mport org...databindi ng. bi ndi ngsour ce. Abstract Request BodyDat aBi ndi ngSour ceCr eat or

*

A cust om Dat aBi ndi ngSour ceCr eat or capabl e of parsing key val ue pairs out of
a request body containing a comma separated |ist of key:value pairs |ike:

/

* ok k% %

name: Her man, age: 99, t own: STL
*

*/
cl ass MyCust onDat aBi ndi ngSour ceCr eat or ext ends Abstract Request BodyDat aBi ndi ngSour ceCr eat or {

@verride
public M neType[] getM nmeTypes() {
[new M neType('text/custom-denmp+csv')] as M neType[]

@verride
prot ected Dat aBi ndi ngSour ce creat eBi ndi ngSour ce(| nput Stream i nput Strean) {
def map = [:]

def reader = new I nput StreanReader (i nput Strean)

/1 this is an obviously naive parser and is intended
/] for dermonstration purposes only.

reader. eachLine { line ->
def keyValuePairs = line.split(',")
keyVal uePai rs. each { keyVal uePair ->
if(keyValuePair?.trim()) {

def keyVal uePi eces = keyVal uePair.split(':")
def key = keyVal uePi eces[0].trin()
def value = keyVal uePi eces[1].trinm()
map<<key>> = val ue

}

/1 create and return a DataBi ndi ngSource which contains the parsed data
new Si npl eMapDat aBi ndi ngSour ce(map)

}

An instance of mcust ondat asour cecr eat or NEEAS tO be registered in the spring application
context.

grail s-app/conf/spring/resources.groovy

beans = {
nmyCust onCr eat or com denp. nyapp. dat abi ndi ng. MyCust onDat aBi ndi ngSour ceCr eat or
...

}

With that in place the framework will use the nycust ontr eat or bean any time a
Dat aBi ndi ngSour ceCr eat or is needed to deal with a request which has a cont ent Type of
"text/custom+demo+csv”.

9.12 RSS and Atom

No direct support is provided for RSS or Atom within Grails. Y ou could construct RSS or
ATOM feeds with the render method’s XML capability.

10 Asynchronous Programming

With modern hardware featuring multiple cores, many programming languages have been
adding asynchronous, parallel programming APIs, Groovy being no exception.

Popular asynchronous libraries include:

® RxJava- http://reactivex.io

® GPars - http://gpars.org

® Reactor - https://projectreactor.io

By building on top of these various libraries the Async features of Grails aim to simplify
concurrent programming within the framework, include the concept of Promises, and a
unified event model.

In general, since the Reactive programming model is an evolving space, Grailstriesto
provide generic support for integrating a range of asynchronous libraries and doesn’t
recommend any single library asthey all have various advantages and disadvantages.

For more information on Asynchronous programming with Grails see the user guide for the
Grails Asynchronous Framework.

11 Validation

Grails validation capability is built on Spring’'s Validator API and data binding capabilities.
However Grails takes this further and provides a unified way to define validation
"constraints" with its constraints mechanism.

Constraints in Grails are away to declaratively specify validation rules. Most commonly
they are applied to domain classes, however URL Mappings and Command Objects also
support constraints.

11.1 Declaring Constraints

Within adomain class constraints are defined with the constraints property that is assigned a
code block:

class User {
String login
String password
String enuil
I nt eger age

static constraints = {

-
}

Y ou then use method calls that match the property name for which the constraint appliesin
combination with named parameters to specify constraints:

class User {

static constraints = {

login size: 5..15, blank: false, unique: true
password size: 5..15, blank: false
email email: true, blank: false

age nmin: 18
}
}

In this example we' ve declared that the 1 ogi n property must be between 5 and 15 characters

http://reactivex.io
http://gpars.org
https://projectreactor.io
https://async.grails.org
https://async.grails.org
https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/validation/package-summary.html

long, it cannot be blank and must be unique. We' ve also applied other constraints to the
password, emi | and age properti&.

By default, all domain class properties are not nullable (i.e. they have an implicit nul 1 abi e:
fal se CONstraint).

A complete reference for the available constraints can be found in the Quick Reference
section under the Constraints heading.

Note that constraints are only evaluated once which may be relevant for a constraint that
relieson avalue like an instance of j ava. util . pate.

class User {

static constraints = {
/1 this Date object is created when the constraints are eval uated, not
/1 each tinme an instance of the User class is validated.
bi rt hDate max: new Date()

}
}

A word of warning - referencing domain class properties from constraints

It's very easy to attempt to reference instance variables from the static constraints block, but
thisisn’t legal in Groovy (or Java). If you do so, you will get am ssi ngpr oper t yExcept i on fOr
your trouble. For example, you may try

cl ass Response {
Survey survey
Answer answer

static constraints = {

survey bl ank: false
answer bl ank: false, inList: survey.answers

}

See how theinLi st constraint references the instance property survey? That won't work.
Instead, use a custom validator:

cl ass Response {
static constraints = {
survey bl ank: fal se
answer blank: false, validator: { val, obj -> val in obj.survey.answers }

}
}

In this example, the obj argument to the custom validator is the domain instance that is being
validated, so we can access its survey property and return a boolean to indicate whether the
new value for the answer property, vai, isvalid.

11.2 Validating Constraints

Validation Basics

Call the validate method to validate a domain class instance:

def user = new User (parans)

if (user.validate()) {
/1 do sonething wth user
}

el se {
user.errors.all Errors. each {

println it
}
}

Theerrors property on domain classesis an instance of the Spring Errors interface. The
errors interface provides methods to navigate the validation errors and also retrieve the
original values.

Validation Phases

Within Grails there are two phases of validation, the first one being data binding which
occurs when you bind request parameters onto an instance such as:

def user = new User (parans)

At this point you may already have errorsin the errors property due to type conversion (such
as converting Strings to Dates). Y ou can check these and obtain the original input value
usi ng theerrors API:

if (user.hasErrors()) {
if (user.errors.hasFieldErrors("login")) {
println user.errors.getFieldError("login").rejectedVal ue

}
}

The second phase of validation happens when you call validate or save. Thisiswhen Grails
will validate the bound values against the constraints you defined. For example, by default
the save method callsvai i dat e before executing, alowing you to write code like:

if (user.save()) {
return user
}

el se {
user.errors.all Errors. each {
println it
}

}

11.3 Sharing Constraints Between Classes

A common pattern in Grailsis to use Command Objects for validating user-submitted data
and then copy the properties of the command object to the relevant domain classes. This
often means that your command objects and domain classes share properties and their
constraints. Y ou could manually copy and paste the constraints between the two, but that’s a
very error-prone approach. Instead, make use of Grails global constraints and import
mechanism.

Global Constraints

In addition to defining constraints in domain classes, command objects and other
validateable classes, you can aso definethemin grails-app/ conf/runtime. groovy.

grails.gormdefault.constraints = {
"*'"(nullable: true, size: 1..20)
nmyShared(nul | abl e: fal se, blank: false)

These constraints are not attached to any particular classes, but they can be easily referenced

from any validateable class:

class User {

static constraints = {
I ogi n shared: "nmyShared"
}

}

https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/validation/Errors.html

Note the use of the shared argument, whose value is the name of one of the constraints
defined ingraiis. gorm defaul t. const rai nts. Despite the name of the configuration setting, you
can reference these shared constraints from any validateable class, such as command
objects.

The ™" constraint is a specia case: it means that the associated constraints (‘nullable’ and
'size' in the above example) will be applied to al propertiesin all validateable classes. These
defaults can be overridden by the constraints declared in a validateable class.

Importing Constraints

Grails 2 introduced an alternative approach to sharing constraints that alows you to import a
set of constraints from one class into another.

Let’s say you have adomain class like so:

class User {
String firstName
String | ast Nane
String passwordHash

static constraints = {
firstNanme bl ank: false, nullable: false
| ast Nane bl ank: false, nullable: false
passwor dHash bl ank: false, nullable: false
}
}

Y ou then want to create a command object, user command, that shares some of the properties of
the domain class and the corresponding constraints. Y ou do this with the i npor t Fron()
method:

cl ass User Command {
String firstNane
String | ast Name
String password
String confirnmPassword

static constraints = {
i nport From User

password bl ank: false, nullable: false
confirnPassword bl ank: false, nullable: false

}
}

Thiswill import all the constraints from the user domain class and apply them to user commanad.
The import will ignore any constraints in the source class (user) that don’'t have
corresponding propertiesin the importing class (user command). [N the above example, only the
firstName' and 'lastName' constraints will be imported into user command because those are the
only properties shared by the two classes.

If you want more control over which constraints are imported, use the i nci ude and excl ude
arguments. Both of these accept alist of simple or regular expression strings that are
matched against the property names in the source constraints. So for example, if you only
wanted to import the 'lastName' constraint you would use:

static constraints = {
i mport From User, include: ["]|astNane"]

}

or if you wanted al constraints that ended with 'Name':

static constraints = {

i nport From User, include: [/.*Nane/]
}

Of course, excl ude does the reverse, specifying which constraints should not be imported.

11.4 Validation on the Client
Displaying Errors

Typically if you get avalidation error you redirect back to the view for rendering. Once
there you need some way of displaying errors. Grails supports arich set of tags for dealing
with errors. To render the errors as alist you can use renderErrors:

<g:render Errors bean="${user}" />

If you need more control you can use hasErrors and eachError:

<g: hasErrors bean="${user}">

<g: eachError var="err" bean="${user}">
${err}
</ g: eachError>
</ ul >
</ g: hasErrors>

Highlighting Errors

It is often useful to highlight using ared box or some indicator when afield has been
incorrectly input. This can also be done with the hasErrors by invoking it as a method. For
example:

<di v class='val ue ${hasErrors(bean:user,field:'login',"errors')}'>
<input type="text" name="login" val ue="${fiel dval ue(bean:user,field:"login)}"/>
</ div>

This code checksif thei ogi n field of the user bean has any errorsand if so it addsan errors
CSS classto the di v, dlowing you to use CSS rules to highlight the di v.

Retrieving Input Values
Each error is actually an instance of the FieldError classin Spring, which retains the original

input value within it. Thisis useful as you can use the error object to restore the value input
by the user using the fieldValue tag:

<input type="text" nane="l|ogin" val ue="${fiel dval ue(bean: user,field:"'login')}"/>

This code will check for an existing i el derror in the user bean and if there is obtain the
originally input value for the 1 ogi n field.

11.5 Validation and I nter nationalization

Another important thing to note about errorsin Grailsisthat error messages are not hard
coded anywhere. The FieldError classin Spring resolves messages from message bundles
using Grails' 118n support.

Constraints and Message Codes

The codes themselves are dictated by a convention. For example consider the constraints we

https://gsp.grails.org/6.1.0/ref/Tags/renderErrors.html
https://gsp.grails.org/6.1.0/ref/Tags/hasErrors.html
https://gsp.grails.org/6.1.0/ref/Tags/eachError.html
https://gsp.grails.org/6.1.0/ref/Tags/hasErrors.html
https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/validation/FieldError.html
https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/validation/FieldError.html

looked at earlier:

package com myconpany. myapp

class User {

static constraints = {
login size: 5..15, blank: false, unique: true
password size: 5..15, blank: false
emai|l email: true, blank: false
age nmin: 18

—

If aconstraint isviolated, Grails looks by convention for a message code:

Constraint Error Code
M cl assNane. pr opert yNane.
creditCard cl assNane. pr opert yNane.
emall cl assNane. propert yNane.
inList cl assName. pr opert yNane.
matches cl assName. pr opert yNane.
max cl assNane. propert yNane.
maxSize cl assName. pr opert yNarre.
ﬁ cl assNane. propert yNane.
minSize cl assName. pr opert yNane.
notEguaI cl assName. pr opert yNane.
nullable cl assName. pr opert yNane.
m cl assNane. pr opert yNane.
cl assNane. propert yNane.
Si_Ze cl assNane. pr opert yNane.
cl assNane. propert yNane.

bl ank

creditCard.invalid

email.invalid

not . i nLi st

mat ches. invalid

max. exceeded

maxSi ze. exceeded

m n. not met

m nSi ze. not et

not Equal

nul | abl e

range.toosmal | OF

range. t oobi g

si ze.toosmal | Or

si ze.toobig

unique cl assNare. pr opert yNane. uni que

c
=

cl assNane. propertyNane. url.invalid

cl assnane. propertyNane. + String returned by

validator Closure

In the case of the bl ank constraint this would be user . 1 ogi n. bl ank SO you would need a message
such asthe followi ng in YOUr grail s-app/i 18n/ messages. properties file:

user. | ogi n. bl ank=Your |ogin name nust be specified!

The class nameis looked for both with and without a package, with the packaged version
taki ng precedence. So for example, com nyconpany. myapp. User . | ogi n. bl ank will be used before
user. 1 ogi n. bl ank. Thisallows for cases where your domain class message codes clash with a
plugin’s.

For areference on what codes are for which constraints refer to the reference guide for each
constraint (e.g. blank).

Displaying M essages

The renderErrors tag will automatically ook up messages for you using the message tag. If
you need more control of rendering you can handle this yourself:

<g: hasErrors bean="${user}">

<g: eachError var="err" bean="${user}">
<g: message error="${err}" /></1i>
</ g: eachError>

</ g: hasErrors>

In this example within the body of the eachError tag we use the message tag in combination
with itserror argument to read the message for the given error.

11.6 Applying Validation to Other Classes

Domain classes and Command Objects support validation by default. Other classes may be
made validateable by defining the static constrai nts property in the class (as described above)
and then telling the framework about them. It isimportant that the application register the
validateabl e classes with the framework. Simply defining the const rai nts property is not
sufficient.

The Validateable Trait

Classes which define the static const rai nt s property and implement the Validateable trait will
be validateable. Consider this example:

src/main/groovy/com/mycompany/myapp/User.groovy
package com nyconpany. nyapp
inmport grails.validation.Validateable

class User inplenents Validateable {

https://gsp.grails.org/6.1.0/ref/Tags/renderErrors.html
https://gsp.grails.org/6.1.0/ref/Tags/message.html
https://gsp.grails.org/6.1.0/ref/Tags/eachError.html
https://gsp.grails.org/6.1.0/ref/Tags/message.html
http://docs.grails.org/6.1.2/api/grails/validation/Validateable.html

static constraints = {
login size: 5..15, blank: false, unique: true
password size: 5..15, blank: false
email email: true, blank: false
age nmn: 18
}
}

Programmatic access

Accessing the constraints on a validateable object is dightly different. Y ou can access a
command object’ s constraints programmatically in another context by accessing the
constrai nt svap Static property of the class. That property is an instance of vap<stri ng,

Const r ai nedPr operty>

In the example above, accessing user . const rai nt sMap. | ogi n. bl ank Would yield tal se, while
User . const rai nt sMap. | ogi n. uni que would yleld true.

12 The Service Layer

Grails defines the notion of a service layer. The Grails team discourages the embedding of
core application logic inside controllers, as it does not promote reuse and a clean separation
of concerns.

Servicesin Grails are the place to put the majority of the logic in your application, leaving
controllers responsible for handling request flow with redirects and so on.

Creating a Service

Y ou can create a Grails service by running the create-service command from the root of
your project in atermina window:

grails create-service helloworld.sinple

If no package is specified with the create-service script, Grails automatically uses the
grails. def aul t Package defined in grail s-app/ conf/application.ym asthe package name.

The above example will create a service at the location
grail s-app/ servi ces/ hel | owor | d/ Si npl eSer vi ce. groovy. A SErvice’' s name ends with the convention
servi ce, Other than that a serviceis aplain Groovy class:

package hel |l oworld

class SinpleService {

}

12.1 Declar ative Transactions

Declar ative Transactions

Services are typically involved with coordinating logic between domain classes, and hence
often involved with persistence that spans large operations. Given the nature of services,
they frequently require transactional behaviour. Y ou can use programmatic transactions with
the withTransaction method, however thisis repetitive and doesn’t fully leverage the power
of Spring’s underlying transaction abstraction.

Services enabl e transaction demarcation, which is a declarative way of defining which

http://docs.grails.org/6.1.2/api/grails/validation/ConstrainedProperty.html

methods are to be made transactional. To enable transactions on a service use the
Transactional transform:

inmport grails.gormtransactions.*

@ransact i onal
class CountryService {

}

Theresult isthat all methods are wrapped in a transaction and automatic rollback occursif a
method throws an exception (both Checked or Runtime exceptions) or an Error. The
propagation level of the transaction is by default set to PROPAGATION_REQUIRED.

Version Grails 3.2.0 was the first version to use GORM 6 by default. Checked exceptions
did not roll back transactions before GORM 6. Only a method which threw aruntime
exception (i.e. one that extends RuntimeException) rollbacked a transaction.

Warning: dependency injection is the only way that declarative transactions work. Y ou
will not get atransactional service if you use the new oOperator such as new Bookser vi ce()

The Transactional annotation vsthetransactional property

In versions of Grails prior to Grails 3.1, Grails created Spring proxies and used the
transactional Property to enable and disable proxy creation. These proxies are disabled by
default in applications created with Grails 3.1 and above in favor of the @ransacti onal
transformation.

For versions of Grails 3.1.x and 3.2.x, if you wish to renable this feature (not recommended)
then you must Set grai i s. spring. transacti onManagenent {0 true or remove the configuration in
grail s-app/ conf/application.ym Ol grails-app/conf/application.groovy.

In Grails 3.3.x Spring proxies for transaction management has been dropped completely,
and you must use Grails' AST transforms. In Grails 3.3.x, if you wish to continue to use
Spring proxies for transaction management you will have to configure them manually, using
the appropriate Spring configuration.

In addition, prior to Grails 3.1 services were transactional by default, as of Grails 3.1 they
are only transactional if the @rransactional transformation is applied.

Custom Transaction Configuration

Grails aso provides @r ansacti onal @nd @bt Transacti onal @nnotations for cases where you need
more fine-grained control over transactions at a per-method level or need to specify an
alternative propagation level. For example, the @wt Transacti onal @annotation can be used to
mark a particular method to be skipped when a class is annotated with @ransacti onal .

Annotating a service method with Transacti onai disables the default Grails transactional
behavior for that service (in the same way that adding tr ansact i onal =f al se do€s) S0 if you
use any annotations you must annotate all methods that require transactions.

In this example i st Books USeS a read-only transaction, updat eeook USeS a default read-write
transaction, and del et eBook 1S NOt transactional (probably not a good idea given its name).

inmport grails.gormtransactions. Transacti onal
cl ass BookService {
@ransactional (readOnly = true)

def IistBooks() {
Book. i st ()
}

https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/transaction/TransactionDefinition.html#PROPAGATION_REQUIRED

@ransact i onal
def updat eBook() {

...

}

def del et eBook() {
...

}

}

Y ou can also annotate the class to define the default transaction behavior for the whole
service, and then override that default per-method:

inport grails.gormtransactions. Transacti onal

@r ansact i onal
cl ass BookService {

def 1istBooks() {
Book. | i st ()
}

def updat eBook() {
...

def del et eBook() {
...
}

Thisversion defaults to al methods being read-write transactional (due to the class-level
annotation), but the i st Books method overrides this to use aread-only transaction:

inport grails.gormtransactions. Transacti onal

@r ansact i onal
cl ass BookService {

@ransactional (readOnly = true)

def |istBooks() {
Book. I i st ()
}

def updat eBook() {
...
}

def del et eBook() {
...
}
}

Although updat eBook and del et eBook aren’t annotated in this example, they inherit the
configuration from the class-level annotation.

For more information refer to the section of the Spring user guide on Using @Transactional.

Unlike Spring you do not need any prior configuration to USe Transacti onal ; just specify the
annotation as needed and Grails will detect them up automatically.

Transaction status

An instance of TransactionStatus is available by default in Grails transactional service
methods.

Example:

inport grails.gormtransactions. Transacti onal

@r ansact i onal
cl ass BookService {

def del et eBook() {
transactionSt atus. set Rol | backOnl y()
}

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/transaction.html#transaction-declarative-annotations
https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/transaction/TransactionStatus.html

12.1.1 Transactions and Multi-DataSour ces

Given two domain classes such as;

class Mvie {
String title
}

cl ass Book {
String title

static mapping = {
dat asour ce ' books'
}

}

Y ou can supply the desired data source to @ ansacti onal OF @eadonl y @annotations.

inport grails.gormtransactions. ReadOnly
inmport grails.gormtransactions. Transacti onal
i mport groovy.transform ConpileStatic

@Conpi | eStatic
cl ass BookService {

@ReadOnl y(' books')

Li st <Book> findAll () {
Book. where {}.findAll ()

}

@ransactional (' books')

Book save(String title) {
Book book = new Book(title: title)
book. save()
book

}
}

@Conpi | eStatic
cl ass MvieService {

@ReadOnl y
Li st<Movie> findAll () {

Movi e. where {}.findAll ()
}

12.1.2 Transactions Rollback and the Session

Under standing Transactions and the Hiber nate Session

When using transactions there are important considerations you must take into account with
regards to how the underlying persistence session is handled by Hibernate. When a
transaction is rolled back the Hibernate session used by GORM is cleared. This means any
objects within the session become detached and accessing uninitialized |azy-loaded
collections will lead to AlazylnitializationException.

To understand why it isimportant that the Hibernate session is cleared. Consider the
following example:

class Author {
String nane
I nteger age

static hasMany = [books: Book]
}

If you were to save two authors using consecutive transactions as follows:

Aut hor . wi t hTransaction { status ->
new Aut hor (nane: "Stephen King", age: 40).save()
st at us. set Rol | backOnl y()

}

Aut hor . wi t hTransaction { status ->
new Aut hor (nanme: "Stephen King", age: 40).save()
}

Only the second author would be saved since the first transaction rolls back the author save()
by clearing the Hibernate session. If the Hibernate session were not cleared then both author
instances would be persisted and it would lead to very unexpected results.

It can, however, be frustrating to get aLazyinitial i zati onexcept i on due to the session being
cleared.

For example, consider the following example:

cl ass Aut hor Service {

voi d updat eAge(id, int age) {
def author = Author.get(id)
aut hor . age = age
if (author.isToodd()) {
t hrow new Aut hor Exception("too ol d", author)
}

}
}

class AuthorController {
def aut hor Servi ce
def updateAge() {
try {
aut hor Servi ce. updat eAge(parans.id, parans.int("age"))

}
catch(e) {

render "Author books ${e.author.books}"
}

}

In the above example the transaction will be rolled back if the age of the aut hor age exceeds
the maximum value defined in the i stooa d() Method by throwing an aut hor except i on. The

Aut hor Except i on references the author but when the books association is accessed a

Lazyl ni ti al i zati onExcepti on Will be thrown because the underlying Hibernate session has been
cleared.

To solve this problem you have a number of options. One isto ensure you query eagerly to
get the data you will need:

cl ass Aut hor Service {

\./.oid updat eAge(id, int age) {
def author = Author.findByld(id, [fetch:[books:"eager"]])

In this example the books association will be queried when retrieving the aut hor .

Thisisthe optimal solution asit requires fewer queries than the following suggested
solutions.

Another solution isto redirect the request after a transaction rollback:

class AuthorController {
Aut hor Servi ce aut hor Servi ce

def updat eAge() {

try {
aut hor Ser vi ce. updat eAge(parans.id, parans.int("age"))

}

catch(e) {
flash. ressage = "Can't update age"
redirect action:"show', id:params.id

In this case a new request will deal with retrieving the author again. And, finally athird
solution isto retrieve the data for the aut hor again to make sure the session remainsin the
correct state:

class AuthorController {
def aut hor Servi ce
def updat eAge() {
try {
aut hor Servi ce. updat eAge(parans.id, parans.int("age"))
}
catch(e) {

def author = Author.read(parans.id)
render "Author books ${author.books}"

}

Validation Errorsand Rollback

A common use case isto rollback atransaction if there are validation errors. For example
consider this service:

inmport grails.validation.ValidationException
cl ass Aut hor Service {
voi d updat eAge(id, int age) {
def author = Author.get(id)
aut hor. age = age

if (lauthor.validate()) {
throw new Val i dati onException("Author is not valid", author.errors)
}

}

To re-render the same view that a transaction was rolled back in you can re-associate the
errors with arefreshed instance before rendering:

inmport grails.validation.ValidationException
class AuthorController {
def aut hor Servi ce
def updat eAge() {
try {
aut hor Ser vi ce. updat eAge(parans.id, parans.int("age"))
}
catch (Validati onException e) {
def author = Author.read(parans.id)

author.errors = e.errors
render view "edit", nodel: [author:author]

12.2 Scoped Services

By default, access to service methods is not synchronised, so nothing prevents concurrent
execution of those methods. In fact, because the service is a singleton and may be used
concurrently, you should be very careful about storing state in a service. Or take the easy
(and better) road and never store state in a service.

Y ou can change this behaviour by placing a service in a particular scope. The supported
scopes are:

® orototype - A NEW serviceis created every timeit isinjected into another class

® equest - A new service will be created per request

® i1ash - A new service will be created for the current and next request only
® 1ow- INnweb flowsthe service will exist for the scope of the flow

® conversation - In web flows the service will exist for the scope of the conversation. ie aroot
flow and its sub flows

® session - A serviceis created for the scope of a user session

® singleton (default) - Only one instance of the service ever exists

If your Serviceistiash, f1owOr conversation Scoped it must implementj ava.io. Serializable
and can only be used in the context of a Web Flow.

To enable one of the scopes, add a static scope property to your class whose value is one of
the above, for example

static scope = "flow

Upgrading

Starting with Grails 2.3, new applications are generated with configuration that defaults the
scope of controllersto singl et on. If singi et on cONtrollersinteract with pr ot ot ype SCOped
services, the services effectively behave as per-controller singletons. If non-singleton
services are required, controller scope should be changed as well.

See Controllers and Scopes in the user guide for more information.

Lazy initialization

Y ou can aso configure whether the serviceislazily initialized. By default, thisisset to tr ue,
but you can disable this and make initialization eager with the 1 azyi nit property:

static lazylnit = fal se

12.3 Dependency | njection and Services
Dependency | njection Basics

A key aspect of Grails servicesisthe ability to use Spring Framework's dependency
injection features. Grails supports "dependency injection by convention”. In other words,
you can use the property name representation of the class name of a service to automatically
inject them into controllers, tag libraries, and so on.

As an example, given a service called sookser vi ce, If you define a property called bookser vi ce
in acontroller asfollows:

cl ass BookController {
def bookService

}

In this case, the Spring container will automatically inject an instance of that service based
on its configured scope. All dependency injection is done by name. Y ou can also specify the
type as follows:

cl ass Aut hor Service {
BookSer vi ce bookService

http://www.springframework.org/

NOTE: Normally the property name is generated by lower casing the first |etter of the
type. For example, an instance of the sookser vi ce class would map to a property named

bookServi ce.

To be consistent with standard JavaBean conventions, if the first 2 |etters of the class name
are upper case, the property name is the same as the class name. For example, the property
name of the Joscrel per Ser vi ce class would be joscrel per Servi ce, NOL j DBCHel per Servi ce OF

j dbcHel per Servi ce.

See section 8.8 of the JavaBean specification for more information on de-capitalization
rules.

Only the top level object is subjected to injection as traversing all nested objectsto
perform injection would be a performance issue.

Be careful when injecting the non-default datasources. For example, using this config:

dat aSour ces:
dat aSour ce:
pool ed: true
j mxExport: true

secondary:
pool ed: true
j mExport: true

Y ou can inject the primary dat asour ce like you would expect:

cl ass BookSqgl Service {

def dataSource

}

But to inject the secondary datasource, you have to use Spring’ s aut owi red injection or

resour ces. gr oovy.

cl ass BookSqgl Secondar yService {
@\wut owi red

@ualifier('dataSource_secondary')
def dat aSource2

}

Dependency I njection and Services

Y ou can inject services in other services with the same technique. If you had an aut hor servi ce
that needed to use the Bookser vi ce, declaring the aut nor servi ce as follows would allow that:

cl ass Aut hor Service {
def bookService
}

Dependency Injection and Domain Classes/ Tag Libraries

Y ou can even inject services into domain classes and tag libraries, which can aid in the
development of rich domain models and views:

cl ass Book {
def bookServi ce

def buyBook() {
bookSer vi ce. buyBook(t hi s)
}

}

Since Grails 3.2.8 thisis not enabled by default. If you want to enable it again, take alook
at Spring Autowiring of Domain Instance

Service Bean Names

The default bean name which is associated with a service can be problematic if there are
multiple services with the same name defined in different packages. For example consider
the situation where an application defines a service class named com demo. Repor ti ngser vi ce @and
the application uses a plugin named reportingutitities and that plugin provides a service
class named com reporting.util.ReportingService.

The default bean name for each of those would be r eporti ngservi ce SO they would conflict
with each other. Grails manages this by changing the default bean name for services
provided by plugins by prefixing the bean name with the plugin name.

In the scenario described above the reportingservi ce bean would be an instance of the
com deno. Repor ti ngServi ce class defined in the application and the
reportingUtilitiesReportingservice bean would be an instance of the

com reporting.util.ReportingService class provided by the ReportingUtilities plugln

For all service beans provided by plugins, if there are no other services with the same name
within the application or other plugins in the application then a bean aias will be created
which does not include the plugin name and that alias points to the bean referred to by the
name that does include the plugin name prefix.

For example, if the reportingutilities plugin provides a service named

com reporting. util.AuthorService and there is no other aut hor servi ce in the application orin any
of the plugins that the application is using then there will be a bean named
reportingUtilitiesAuthorService which is an instance of this com reporting.util.AuthorService
class and there will be a bean alias defined in the context named aut hor ser vi ce Which points
to that same bean.

13 Static Type Checking And Compilation

Groovy is adynamic language and by default Groovy uses a dynamic dispatch mechanism
to carry out method calls and property access. This dynamic dispatch mechanism provides a
lot of flexibility and power to the language. For example, it is possible to dynamically add
methods to classes at runtime and it is possible to dynamically replace existing methods at
runtime. Features like these are important and provide alot of power to the language.
However, there are times when you may want to disable this dynamic dispatch in favor of a
more static dispatch mechanism and Groovy provides away to do that. The way to tell the
Groovy compiler that a particular class should compiled statically isto mark the class with
the groovy.transform.CompileStatic annotation as shown below.

i mport groovy.transform ConpileStatic

@Conpi | eStatic
class MyCl ass {

/1 this class will be statically conpiled...

}

See these notes on Groovy static compilation for more details on how conpi 1 est ati ¢ WOrks
and why you might want to useit.

One limitation of using conpi I est ati ¢ IS that when you use it you give up access to the power
and flexibility offered by dynamic dispatch. For example, in Grails you would not be able to

http://docs.grails.org/latest/ref/Domain%20Classes/Usage.html#_spring_autowiring_of_domain_instances
http://docs.groovy-lang.org/docs/latest/html/api/groovy/transform/CompileStatic.html
http://docs.groovy-lang.org/latest/html/documentation/#_static_compilation

invoke a GORM dynamic finder from a class that is marked with conpi 1 estati ¢ because the
compiler cannot verify that the dynamic finder method exists, because it doesn’t exist at
compiletime. It may be that you want to take advantage of Groovy’s static compilation
benefits without giving up access to dynamic dispatch for Grails specific things like
dynamic finders and this is where grails.compiler.GrailsCompileStatic comesiin.

Grai | sConpi | estati ¢ behaves just like conpi 1 estati c but is aware of certain Grails features and
allows access to those specific features to be accessed dynamically.

13.1 The GrailsCompileStatic Annotation

GrailsCompileStatic

The @ ai 1 sconpi 1 est at i ¢ @nnotation may be applied to a class or methods within a class.

inmport grails.conpiler.GailsConpileStatic

@5 ai | sConpi l eStatic
cl ass Soned ass {

/1 all of the code in this class will be statically conpiled

def nethodOne() {
1o
}

def nmethodTwo() {
1.
}

def nethodThree() {
I
}

}
inport grails.conpiler.GailsConpileStatic
cl ass Soned ass {

/1 methodOne and nmethodThree will be statically conpiled
/1 methodTwo will be dynam cally conpiled

@ ai | sConpi l eStatic

def nethodOne() {
...

}

def nethodTwo() {
...

}

@ ai | sConpil eStatic

def nethodThree() {
...
}

}

It is possible to mark a class with a ai 1 sconpi 1 est ati ¢ @nd exclude specific methods by
marking them with & ai 1 sconpi 1 estati ¢ @and specifying that the type checking should be
skipped for that particular method as shown below.

inport grails.conpiler.GailsConpileStatic
i mport groovy. transform TypeChecki ngMode

@ ai | sConpi l eStatic
class Soned ass {

/1 methodOne and nmethodThree will be statically conpiled
/1 methodTwo will be dynamically conpiled

def nethodOne() {
...
}

@ ai | sConpi | eStati c(TypeChecki nghbde. SKI P)
def nethodTwo() {

...
}

def nethodThree() {
...

http://docs.grails.org/6.1.2/api/grails/compiler/GrailsCompileStatic.html

}
}

Code that is marked with & ai 1 sconpi 1 estati c Will all be statically compiled except for Grails
specific interactions that cannot be statically compiled but that & ai | sconpi 1 estatic can
identify as permissible for dynamic dispatch. These include things like invoking dynamic
finders and DSL code in configuration blocks like constraints and mapping closuresin
domain classes.

Care must be taken when deciding to statically compile code. There are benefits associated
with static compilation but in order to take advantage of those benefits you are giving up the
power and flexibility of dynamic dispatch. For example if codeis statically compiled it
cannot take advantage of runtime metaprogramming enhancements which may be provided
by plugins.

13.2 The GrailsTypeChecked Annotation

GrailsTypeChecked

The grails.compiler.GrailsTypeChecked annotation works alot like the arai 1 sconpi 1 estati ¢
annotation except that it only enables static type checking, not static compilation. This
affords compile time feedback for expressions which cannot be validated statically at
compile time while still leaving dynamic dispatch in place for the class.

inport grails.conpiler.Gail sTypeChecked

@ ai | sTypeChecked
cl ass SoneCd ass {

/1 all of the code in this class will be statically type
/'l checked and will be dynamically dispatched at runtinme

def nethodOne() {
...
}

def nethodTwo() {
...
}

def nethodThree() {
...
}

14 Testing

Automated testing is acritical aspect of Grails development. Grails provides arich set of
testing capabilities, ranging from low-level unit testing to high-level functiona tests. This
comprehensive guide explores these diverse testing features in detail.

Automatic Test Generation

When you use the create- and generate- cOmmands, Grails automatically generates unit or
i ntegration tests. For example, running the creat e- control 1 er cOmmand as shown below:

grails create-controller comexanple.sinple

Grails generates a controller at grails-app/controllers/com/example/SimpleController.groovy
and a corresponding unit test at src/test/groovy/com/example/SimpleControllerSpec.groovy.
I’ simportant to note that Grails only creates the test structure; you need to implement the
test logic.

http://docs.grails.org/6.1.2/api/grails/compiler/GrailsTypeChecked.html

Running Tests
To execute tests, you can use the Gradle check task:

./ gradl ew check

This command will execute all the Unit tests in src/main/groovy/com/example/ directory.
Targeting Tests
To selectively target tests for execution, you have several options:

1. Torun al testsfor a controller named SimpleController, use this command:

./ gradl ew check --tests SinpleController

2. Totest al classes ending in Controller, you can employ wildcards:

./ gradl ew check --tests *Controller

3. To specify package names:

./ gradl ew check --tests sone.org.*Controller

4. Torun all testsin a package:

./ gradl ew check --tests sone.org.*

5. Torun al testsin a package, including subpackages:

./gradl ew check --tests sone.org.**. *

(o2}

. To target specific test methods:

./ gradl ew check --tests SinpleController.testLogin

Y ou can combine multiple patterns as needed:
./ gradl ew check --tests sone.org.* SinpleController.testLogin BookController

Y ou might need to specify the package name before the class name and append " Spec" to
it. For instance, to run the test for the ProductController, use ./gradlew test

* ProductControllerSpec. Y ou can also use the star wildcard if you want to avoid typing
the entire package hierarchy.

Debugging

To debug your tests using a remote debugger, you can add - - debug- j vmafter ./ gradi ew in any
commands, like so:

./ gradl ew check --debug-jvm

Thiswill open the default Java remote debugging port, 5005, allowing you to attach a
remote debugger from your code editor or integrated development environment.

Targeting Test Phases/ Running Unit & Integration Separ ately

To execute "unit" tests, use this command:

./ gradl ew test

For "integration" tests, you would run:

./gradl ew i ntegrationTest

Targeting Tests When Using Phases

Y ou can combine test and phase targeting:

./gradl ew test some.org.**.*

This command will run all testsin the unit phase within the some.org package or its
subpackages. For more detailed information, it's recommended to consult the Gradle
documentation on Testing in Java& JVM projects.

14.1 Unit Testing

Unit testing are tests at the "unit” level. In other words you are testing individual methods or
blocks of code without consideration for surrounding infrastructure. Unit tests are typically
run without the presence of physical resources that involve I/O such as databases, socket
connections or files. Thisisto ensure they run as quick as possible since quick feedback is
important.

Since Grails 3.3, the Grails Testing Support Framewaork is used for all unit tests. This
support provides a set of traits. An example hello world test can be seen below:
i nport spock. | ang. Speci fication
inmport grails.testing.web.controllers. ControllerUnitTest
class HelloControllerTests extends Specification inplenents ControllerUnitTest<HelloController> {
voi d "Test nessage action"() {
when: " The nessage action is invoked"

control |l er. message()

then:"Hello is returned"
response.text == 'Hello
}

}

For more information on writing tests with Grails Testing Support see the dedicated
documentation.

Versions of Grails below 3.2 used the Grails Test Mixin Framework which was based on the
aestM xi n AST transformation. This library has been superceded by the smpler and more
IDE friendly trait based implementation.

14.2 Integration Testing

Integration tests differ from unit tests in that you have full access to the Grails environment
within the test. Y ou can create an integration test using the create-integration-test command:

$ grails create-integration-test Exanple

The above command will create a new integration test at the location
src/integration-test/groovy/ <PACKAGE>/ Exanpl eSpec. gr oovy.

Grails uses the test environment for integration tests and loads the application prior to the
first test run. All tests use the same application state.

Transactions

https://docs.gradle.org/current/userguide/java_testing.html
https://testing.grails.org
https://testing.grails.org
https://testing.grails.org
https://grails-plugins.github.io/grails-test-mixin-plugin/latest/guide/index.html

Integration test methods run inside their own database transaction by default, which isrolled
back at the end of each test method. This means that data saved during atest is not persisted
to the database (which is shared across all tests). The default generated integration test
template includes the Rallback annotation:

inmport grails.testing.mxin.integration.Integration
inport grails.gormtransactions.*
i mport spock. | ang.*

@ntegration

@Rrol | back
cl ass Exanpl eSpec extends Specification {

void "test sonething"() {
expect:"fix me"
true == fal se
}
}

The rol 1 back @nnotation ensures that each test method runs in atransaction that isrolled
back. Generally thisis desirable because you do not want your tests depending on order or
application state.

In Grails 3.0 tests rer ON grails.gormtransactions. Rol | back annotation to bind the session in
integration tests. Though each test method transaction is rolled back, the set up() method uses
a separate transaction that is not rolled back. Data will persist to the database and will need
to be cleaned up manually if setup() Sets up data and persists them as shown in the below
sample:

inport grails.testing.mxin.integration.|Integration
inmport grails.gormtransactions.*
i nport spock. | ang. *

@ntegration

@Rol | back
cl ass BookSpec extends Specification {

voi d setup() {
/1 Below |line would persist and not roll back
new Book(name: 'Grails in Action').save(flush: true)

}

void "test something"() {
expect :
Book. count () == 1

}

}

To preload the database and automatically roll back setup logic, any persistence operations
need to be called from the test method itself so that they can run within the test method’ s
rolled back transaction. Similar to usage of the set uppat a() method shown below which
creates arecord in database and after running other test will be rolled back:

inport grails.testing.mxin.integration.|Integration
inmport grails.gormtransactions.*
i mport spock. |l ang.*

@ntegration

@Rol | back
cl ass BookSpec extends Specification {

voi d setupData() {
/1 Below line would roll back
new Book(nanme: 'Grails in Action').save(flush: true)

}
void "test something"() {
gi ven:
set upDat a()
expect :
Book. count () == 1
}

http://docs.grails.org/6.1.2/api/grails/transaction/Rollback.html

Using Spring’s Rollback annotation

Another transactional approach could be to use Spring’s @Rallback instead.

inport grails.testing.mxin.integration.Integration
import org.springfranework.test.annotation. Rol | back
i nport spock.|ang.*

@ntegration
@Rol | back
cl ass BookSpec extends Specification {

void setup() {
new Book(nanme: 'Grails in Action').save(flush: true)

void "test something"() {
expect :
Book. count () == 1

}

}

Itisn't possibleto make grai I s. gorm transacti ons. Rol | back Dehave the same way asSpring’s
Rollback annotation because graiI's. gorm transacti ons. Rol I back transforms the byte code of
the class, eliminating the need for a proxy (which Spring’s version requires). This has the
downside that you cannot implement it differently for different cases (as Spring does for
testing).

DirtiesContext

If you do have a series of tests that will share state you can remove the rol 1 back and the last
test in the suite should feature the DirtiesContext annotation which will shutdown the
environment and restart it fresh (note that this will have an impact on test run times).

Autowiring

To obtain areference to a bean you can use the Autowired annotation. For example:

i nport org. springframework. beans. factory. annotati on. *

@ntegration

@Rol | back

cl ass Exanpl eServi ceSpec extends Specification {

@\ut owi r ed
Exanpl eServi ce exanpl eServi ce

voi d "Test exanple service"() {
expect:
exanpl eServi ce. count Exanpl es() == 0
}

}

Testing Controllers

To integration test controllersit is recommended you use create-functional -test command to
create a Geb functional test. See the following section on functional testing for more
information.

14.3 Functional Testing

Functional tests involve making HT TP requests against the running application and
verifying the resultant behaviour. Thisis useful for end-to-end testing scenarios, such as
making REST calls against a JSON API.

Grails by default ships with support for writing functional tests using the Geb framework.

https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/test/annotation/Rollback.html
https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/test/annotation/DirtiesContext.html
https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/beans/factory/annotation/Autowired.html
http://www.gebish.org

To create afunctional test you can use the creat e- f uncti onal - test command which will create
anew functional test:

$ grails create-functional -test MyFunctional

The above command will create a new Spock spec called wFuncti onal spec. groovy N the
src/integration-test/groovy directory. Thetest isannotated with the Integration annotation to
indicate it is an integration test and extends the cebspec SUper class:

@ntegration
cl ass HonmeSpec extends GebSpec {

def setup() {
}

def cleanup() {
}

void "Test the home page renders correctly"() {
when: " The hone page is visited"
go '/’

then:"The title is correct”
$('title').text() == "Welcone to Gails"
}
}

When the test is run the application container will be loaded up in the background and you
can send reguests to the running application using the Geb API.

Note that the application is only loaded once for the entire test run, so functional tests share
the state of the application across the whole suite.

In addition the application is loaded in the VM as the test, this means that the test has full
access to the application state and can interact directly with data services such as GORM to
setup and cleanup test data.

The I ntegrati on @nNotation supports an optional appi i cati ond ass attribute which may be used
to specify the application class to use for the functional test. The class must extend
GrailsAutoConfiguration.

@ntegration(applicationCl ass=com denp. Appl i cati on)
cl ass HomeSpec extends GebSpec {

...
}

If the appl i cationa ass 1S Not specified then the test runtime environment will attempt to locate
the application class dynamically which can be problematic in multiproject builds where
multiple application classes may be present.

When running the server port by default will be randomly assigned. The i ntegrati on
annotation adds a property of serverport to the test class that you can useif you want to know
what port the application is running on thisisn't needed if you are extending the cebspec as
shown above but can be useful information.

If you want to run the tests on afixed port (defined by the server. port configuration
property), you need to manually annotate your test with @spri nggoot Test :

inport grails.testing.mxin.integration.|Integration
i nport org.springframework. boot . test. context. Spri ngBoot Test
i mport spock. | ang. Speci fication

@ntegration
@Bpr i ngBoot Test (webEnvi ronment = SpringBoot Test. WebEnvi r onnent . DEFI NED_PORT)
cl ass MySpec extends Specification {

http://docs.grails.org/6.1.2/api/grails/test/mixin/integration/Integration.html
http://docs.grails.org/6.1.2/api/grails/boot/config/GrailsAutoConfiguration.html

..

15 Inter nationalization

Grails supports Internationalization (i118n) out of the box by leveraging the underlying
Spring MV C internationalization support. With Grails you are able to customize the text that
appearsin aview based on the user’s Locale. To quote the javadoc for the Locale class:

A Locale object represents a specific geographical, political, or cultural region. An operation
that requires a Locale to perform itstask is called locale-sensitive and uses the Locale to
tailor information for the user. For example, displaying a number is alocale-sensitive
operation—the number should be formatted according to the customs/conventions of the
user’s native country, region, or culture.

A Localeis made up of alanguage code and a country code. For example "en_US" isthe
code for US English, whilst "en_GB" isthe code for British English.

15.1 Under standing M essage Bundles

Now that you have an idea of locales, to use them in Grails you create message bundle file
containing the different languages that you wish to render. Message bundlesin Grails are
located inside the grai 1 s- app/ i 18n directory and are simple Java properties files.

Each bundle starts with the name ressages by convention and ends with the locale. Grails
ships with several message bundles for awhole range of languages within the grai i s- app/i 18n
directory. For example:

® messages.properties

® messages da.properties

® messages de.properties

® messages _es.properties

® messages fr.properties

By default Grails|00KsS in messages. properties fOr messages unless the user has specified a
locale. You can create your own message bundle by ssmply creating a new propertiesfile
that ends with the locale you are interested in. For example nessages_en_cs. properti es fOr
British English.

15.2 Changing L ocales

By default, the user locale is detected from the incoming Accept - Language header. Y ou can
provide users the capability to switch locales by simply passing a parameter called i ang to
Grails as arequest parameter:

/ book/ i st ?l ang=es

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Locale.html
http://www.loc.gov/standards/iso639-2/php/English_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

Grails will automatically switch the user’s locale and subsequent requests will use the
switched locale.

By default, Grails uses SessionL ocaleResolver asthe i ocal eresol ver bean.
Y ou can change the default locale easily:

grails-app/conf/spring/resources.groovy
i nport org.springframework. web. servl et.i 18n. Sessi onLocal eResol ver

beans = {
| ocal eResol ver (Sessi onLocal eResol ver) {
def aul t Local e= new Local e(' es')
}

}

Other 1 ocal eresol ver are available. For example, you could use save the switched localein a
Cookie:

grail s-app/conf/spring/resources.groovy
i nport org.springframework. web. servl et.i 18n. Cooki eLocal eResol ver

beans = {
| ocal eResol ver (Cooki eLocal eResol ver) {
def aul t Local e= new Local e(' es')
}

}

Or fix thelocale:

grail s-app/conf/spring/resources.groovy
i mport org.springfranework. web. servl et.i18n. Fi xedLocal eResol ver

beans = {
| ocal eResol ver (Fi xedLocal eResol ver, new Local e(' de'))
}

15.3 Reading M essages
Reading M essagesin the View

The most common place that you need messages is inside the view. Use the message tag for
this:

<g: nessage code="nmny.localized.content" />

Aslong as you have akey in your rmessages. properties (With appropriate locale suffix) such as
the one below then Grails will look up the message:

ny.localized. content=Hola, ne |Ilanp John. Hoy es doni ngo.

Messages can also include arguments, for example:

<g: message code="ny.|ocalized.content” args="${ ['Juan', 'lunes'] }" />

The message declaration specifies positional parameters which are dynamically specified:

ny.localized. content=Hola, ne |lanp {0}. Hoy es {1}.
Reading M essagesin Grails Artifacts with M essageSour ce

In aGrails artifact, you can inject nessagesour ce and use the method get message With the
arguments: message code, message arguments, default message and locale to retrieve a

https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/web/servlet/i18n/SessionLocaleResolver.html
https://gsp.grails.org/6.1.0/ref/Tags/message.html

message.

i mport org.springfranework. cont ext. MessageSour ce
i nport org.springframework. context.i18n. Local eCont ext Hol der

class MyappController {
MessageSour ce nmessageSour ce

def show() {

def nsg = nmessageSource. get Message(' ny.localized.content', ['Juan', 'lunes'] as Object[], 'Default Message

}
Reading M essagesin Controllersand Tag Librarieswith the Message Tag

Additionally, you can read a message inside Controllers and Tag Libraries with the Message
Tag. However, using the message tag relies on GSP support which a Grails application may
not necessarily have; e.g. arest application.

In a controller, you can invoke tags as methods.

def show() {
def nsg = nmessage(code: "my.localized.content”, args: ['Juan', 'lunes'])
}

The same technique can be used in tag libraries, but if your tag library uses a custom
namespace then you must prefix the call with g. :

def nyTag = { attrs, body ->
def nsg = g.message(code: "ny.localized.content", args: ['Juan', 'lunes'])
}

15.4 Scaffolding and i18n

Grails scaffolding templates for controllers and views are fully i18n-aware. The GSPs use
the message tag for labels, buttons etc. and controller 11 ash messages use i18n to resolve
local e-specific messages.

The scaffolding includes locale specific labels for domain classes and domain fields. For
example, if you have asook domain classwith atitie field:

cl ass Book {
String title
}

The scaffolding will use labels with the following keys:

book. | abel = Libro
book.title.label = Titulo del libro

Y ou can use this property pattern if you'd like or come up with one of your own. Thereis

nothing special about the use of the word 1 abel as part of the key other than it’ s the
convention used by the scaffolding.

16 Security

Grailsis no more or less secure than Java Servlets. However, Java servlets (and hence
Grails) are extremely secure and largely immune to common buffer overrun and malformed
URL exploits due to the nature of the Java Virtual Machine underpinning the code.

Web security problems typically occur due to developer naivety or mistakes, and thereisa

http://gsp.grails.org/latest/ref/Tags/message.html
http://gsp.grails.org/latest/ref/Tags/message.html
https://gsp.grails.org/6.1.0/ref/Tags/message.html

little Grails can do to avoid common mistakes and make writing secure applications easier to
write.

What Grails Automatically Does
Grails has afew built in safety mechanisms by default.

* All standard database access via GORM domain objects is automatically SQL escaped to
prevent SQL injection attacks

® The default scaffolding templates HTML escape all data fields when displayed

® Grailslink creating tags (link, form, createl ink, createl inkTo and others) all use
appropriate escaping mechanisms to prevent code injection

® Grails provides codecsto let you trivially escape data when rendered as HTML, JavaScript
and URL s to prevent injection attacks here.

16.1 Securing Against Attacks
SQL injection

Hibernate, which is the technology underlying GORM domain classes, automatically
escapes data when committing to database so thisis not an issue. However it is still possible
to write bad dynamic HQL code that uses unchecked request parameters. For example doing
the following is vulnerable to HQL injection attacks:

def vul nerable() {
def books = Book.find("fromBook as b where b.title =" + parans.title + "'")

}

or the analogous call using a GString:

def vul nerabl e() {
def books = Book.find("from Book as b where b.title =" ${parans.title}'")

}

Do not do this. Use named or positional parameters instead to passin parameters:

def safe() {
def books = Book.find("from Book as b where b.title
[paranms.title])
}

"
N

or

def safe() {
def books = Book.find("from Book as b where b.title = :title",
[title: parans.title])

}

Phishing

Thisreally apublic relations issue in terms of avoiding hijacking of your branding and a
declared communication policy with your customers. Customers need to know how to
identify valid emails.

XSS - cross-site scripting injection

It isimportant that your application verifies as much as possible that incoming requests were
originated from your application and not from another site. It is a'so important to ensure that

https://gsp.grails.org/6.1.0/ref/Tags/link.html
https://gsp.grails.org/6.1.0/ref/Tags/form.html
https://gsp.grails.org/6.1.0/ref/Tags/createLink.html
https://gsp.grails.org/6.1.0/ref/Tags/createLinkTo.html

all datavalues rendered into views are escaped correctly. For example when rendering to
HTML or XHTML you must ensure that people cannot maliciously inject JavaScript or
other HTML into data or tags viewed by others.

Grails 2.3 and above include special support for automatically encoded data placed into GSP

pages. See the documentation on Cross Site Scripting (XSS) prevention for further
information.

Y ou must also avoid the use of request parameters or data fields for determining the next
URL to redirect the user to. If you use asuccessur. parameter for example to determine
where to redirect a user to after a successful login, attackers can imitate your login
procedure using your own site, and then redirect the user back to their own site once logged
in, potentially allowing JavaScript code to then exploit the logged-in account on the site.

Cross-siterequest forgery

CSRF involves unauthorized commands being transmitted from a user that a website trusts.
A typical example would be another website embedding alink to perform an action on your
websiteif the user is still authenticated.

The best way to decrease risk against these types of attacks is to use the usetoken attribute on
your forms. See Handling Duplicate Form Submissions for more information on how to use
it. An additional measure would be to not use remember-me cookies.

HTML/URL injection

Thisiswhere bad datais supplied such that when it islater used to create alink in a page,
clicking it will not cause the expected behaviour, and may redirect to another site or alter
request parameters.

HTML/URL injection is easily handled with the codecs supplied by Grails, and the tag
libraries supplied by Grails all use encodeAsURL where appropriate. If you create your own
tags that generate URL s you will need to be mindful of doing this too.

Denial of service

Load balancers and other appliances are more likely to be useful here, but there are also
issues relating to excessive queries for example where alink is created by an attacker to set
the maximum value of aresult set so that a query could exceed the memory limits of the
server or slow the system down. The solution here is to always sanitize request parameters
before passing them to dynamic finders or other GORM query methods:

int limt = 100
def safeMax = Math.m n(parans. max?.tolnteger() ?: limt, limt) // limt to 100 results
return Book. i st (max: saf eMax)

Guessable | Ds

Many applications use the last part of the URL asan "id" of some object to retrieve from
GORM or elsewhere. Especialy in the case of GORM these are easily guessable as they are
typically sequential integers.

Therefore you must assert that the requesting user is allowed to view the object with the
requested id before returning the response to the user.

Not doing thisis "security through obscurity” which isinevitably breached, just like having
adefault password of "letmein” and so on.

Y ou must assume that every unprotected URL is publicly accessible one way or another.

16.2 Cross Site Scripting (XSS) Prevention

Cross Site Scripting (X SS) attacks are a common attack vector for web applications. They
typically involve submitting HTML or Javascript code in aform such that when that codeis
displayed, the browser does something nasty. It could be as simple as popping up an aert
box, or it could be much worse like for example one could access other users session
cookies.

The solution isto escape all untrusted user input when it is displayed in a page. For
example,

<script>alert('CGot ya!');</script>

will become

&l t;script>alert('Got ya!'); & t;/scripté>
when rendered, nullifying the effects of the malicious input.

By default, Grails playsit safe and escapes all content in s{} expressionsin GSPs. All the
standard GSP tags are also safe by default, escaping any relevant attribute values.

So what happens when you want to stop Grails from escaping some content? There are valid
use cases for putting HTML into the database and rendering it as-is, as long as that content
istrusted. In such cases, you can tell Grails that the content is safe as should be rendered
raw, i.e. without any escaping:

<section>${raw(page. content)}</section>

Theraw) method you see here is available from controllers, tag libraries and GSP pages.

XSS prevention ishard and requiresalot of developer attention

Although Grails playsit safe by default, that is no guarantee that your application will be
invulnerable to an X SS-style attack. Such an attack isless likely to succeed than would
otherwise be the case, but devel opers should always be conscious of potential attack
vectors and attempt to uncover vulnerabilitiesin the application during testing. It' s also
easy to switch to an unsafe default, thereby increasing the risk of avulnerability being
introduced.

There are more details about the XSS in OWASP - XSS prevention rules and OWASP -
Types of Cross-Site Scripting. Types of XSS are: Stored XSS, Reflected XSS and DOM
based XSS. DOM based XSS prevention is coming more important because of the
popularity of Javascript client side templating and Single Page Apps.

Grails codecs are mainly for preventing stored and reflected XSS type of attacks. Grails 2.4
includes HTMLJS codec that assistsin preventing some DOM based XSS attacks.

It's difficult to make a solution that works for everyone, and so Grails provides alot of
flexibility with regard to fine-tuning how escaping works, allowing you to keep most of
your application safe while switching off default escaping or changing the codec used for
pages, tags, page fragments, and more.

Configuration

https://blog.codinghorror.com/protecting-your-cookies-httponly/
https://blog.codinghorror.com/protecting-your-cookies-httponly/
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet#XSS_Prevention_Rules
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)#Stored_XSS_Attacks
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)#Reflected_XSS_Attacks
https://www.owasp.org/index.php/DOM_Based_XSS
https://www.owasp.org/index.php/DOM_Based_XSS
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

It is recommended that you review the configuration of a newly created Grails application to
garner an understanding of XSS prevention worksin Grails.

When you tag a cookie with the HttpOnly flag, it tells the browser that this particular cookie
should only be accessed by the server. Any attempt to access the cookie from client script is
strictly forbidden. This can be configured in the appii cation. ym configuration file as seen
below:

server:
session:
cooki e:
donmi n: exanple.org
http-only: true
path: /
secure: true

GSP features the ability to automatically HTML encode GSP expressions, and as of Grails
2.3 thisisthe default configuration. The default configuration (found in appi i cation. yni) for a
newly created Grails application can be seen below:

grails:
Vi ews:
gsp:
encodi ng: UTF-8
ht M codec: xm # use xm escaping instead of HTM.4 escapi ng
codecs:
expression: htm # escapes val ues inside ${}

scriptlets: htm # escapes output fromscriptlets in GSPs
taglib: none # escapes output fromtaglibs
staticparts: none # escapes output fromstatic tenplate parts

GSP features severa codecs that it uses when writing the page to the response. The codecs
are configured in the codecs block and are described below:

® cxpression - The expression codec is used to encode any code found within ${..} expressions.
The default for newly created application isntm encoding.

® scriptiet - Used for output from GSP scriplets (<% %>, <%= %> blocks). The default for
newly created applicationsisntn encoding

® taglib- Used to encode output from GSP tag libraries. The default is none for new
applications, astypically it is the responsibility of the tag author to define the encoding of a
given tag and by specifying none Grails remains backwards compatible with older tag
libraries.

® staticparts - Used to encode the raw markup output by a GSP page. The default is none.
Double Encoding Prevention
Versions of Grails prior to 2.3, included the ability to set the default codec to ntni , however
enabling this setting sometimes proved problematic when using existing plugins due to
encoding being applied twice (once by the ntni codec and then again if the plugin manually

cdled encodeAsHTle).

Grails 2.3 includes double encoding prevention so that when an expression is evaluated, it
will not encode if the data has already been encoded (Example s oo. encodeAsHTM () }).

Raw Output
If you are 100% sure that the value you wish to present on the page has not been received

from user input, and you do not wish the value to be encoded then you can use the raw
method:

${raw(book.title)}
The 'raw' method is available in tag libraries, controllers and GSP pages.
Per Plugin Encoding

Grails also features the ability to control the codecs used on a per plugin basis. For example
if you have a plugin named o0 installed, then placing the following configuration in your
appl i cati on. groovy Will disable encoding for only the oo plugin

foo.grails.views.gsp.codecs. expressi on = "none"
Per Page Encoding

Y ou can aso control the various codecs used to render a GSP page on a per page basis,
using a page directive:

<Y%dage expressi onCodec="none" %
Per Tag Library Encoding

Each tag library created has the opportunity to specify a default codec used to encode output
from the tag library using the "defaultEncodeAs" property:

static defaul tEncodeAs = '"htni'

Encoding can also be specified on a per tag basis using "encodeAsForTags':

static encodeAsForTags = [tagNane: 'raw]

Context Sensitive Encoding Switching

Certain tags require certain encodings and Grails features the ability to enable a codec only a
certain part of atag’'s execution using the "withCodec" method. Consider for example the
"<g:javascript>"" tag which allows you to embed JavaScript code in the page. Thistag
requires JavaScript encoding, not HTML coding for the execution of the body of the tag (but
not for the markup that is output):

out.println '<script type="text/javascript">'
wi t hCodec("JavaScript") {
out << body()

out.println()
out.println '</script>'

Forced Encoding for Tags

If atag specifies a default encoding that differs from your requirements you can force the
encoding for any tag by passing the optional ‘'encodeAs attribute:

<g: nessage code="foo.bar" encodeAs="JavaScript" />

Default Encoding for All Output

The default configuration for new applications is fine for most use cases, and backwards
compatible with existing plugins and tag libraries. However, you can also make your
application even more secure by configuring Grails to always encode all output at the end of
aresponse. Thisisdone using the i teringcodecFor Cont ent Type CONfiguration in

appl i cation. groovy.

grails.views.gsp.filteringCodecForContent Type. ' text/html' = "htnl"'

Note that, if activated, the staticparts codec typically needs to be set to raw SO that static
markup is not encoded:

codecs {
expression = 'htnml' // escapes val ues inside ${}
scriptlet = '"html" // escapes output fromscriptlets in GSPs
taglib = '"none' // escapes output fromtaglibs
staticparts = 'raw // escapes output fromstatic tenplate parts

}

16.3 Encoding and Decoding Objects

Grails supports the concept of dynamic encode/decode methods. A set of standard codecs
are bundled with Grails. Grails aso supports a simple mechanism for developersto
contribute their own codecs that will be recognized at runtime.

Codec Classes

A Grails codec classis one that may contain an encode closure, a decode closure or both.
When a Grails application starts up the Grails framework dynamically loads codecs from the
grails-app/utils/ directory.

The framework |0oks under grai i s-app/utits/ for class names that end with the convention
codec. FOr example one of the standard codecs that ships with Grailsis Hrm codec.

If a codec contains an encode closure Grailswill create a dynamic encode method and add that
method to the aj ect class with a name representing the codec that defined the encode
closure. For example, the Hrm.codec Class defines an encode Closure, so Grails attaches it with
the name encodeasHTM.

The Hrm.codec @nd urRLcodec Classes also define a decode Closure, so Grails attaches those with
the names decodeHtm. @nd decodeur. respectively. Dynamic codec methods may be invoked
from anywhere in a Grails application. For example, consider a case where areport contains
aproperty called 'description’ which may contain special characters that must be escaped to
be presented in an HTML document. One way to deal with that in a GSP is to encode the
description property using the dynamic encode method as shown below:

${report.description. encodeAsHTM.() }
Decoding is performed using val ue. decodeHTm () Syntax.
Encoder and Decoder interfacesfor staticly compiled code

A preferred way to use codecsis to use the codecL ookup bean to get hold of encoder and
Decoder iNStaNCES.

package org.grails.encoder;
public interface CodeclLookup {

publ i c Encoder | ookupEncoder(String codecNane);
publ i c Decoder |ookupDecoder (String codecNane);

}

example of using codecLookup @nd encoder interface

inport org.grails.encoder. CodecLookup

cl ass CustoniragLi b {
CodecLookup codecLookup

def nyTag = { Map attrs, body ->
out << codecLookup. | ookupEncoder (' HTM.') . encode(attrs. sonet hi ng)
}

}

Standard Codecs
HTMLCodec

This codec performs HTML escaping and unescaping, so that values can be rendered safely
inan HTML page without creating any HTML tags or damaging the page layout. For
example, given avalue "Don’t you know that 2 > 17" you wouldn’t be able to show this
safely within an HTML page because the > will look like it closes atag, which is especialy
bad if you render this data within an attribute, such as the value attribute of an input field.

Example of usage:
<i nput nanme="comment . nessage” val ue="${coment. nessage. encodeAsHTM.()}"/>

Note that the HTML encoding does not re-encode apostrophe/single quote so you must use
double quotes on attribute values to avoid text with apostrophes affecting your page.

HTML Codec defaultsto HTML4 style escaping (legacy HTML Codec implementation in
Grails versions before 2.3.0) which escapes non-ascii characters.

Y ou can use plain XML escaping instead of HTML4 escaping by setting this config
property in appl i cation. groovy.

grails.views.gsp. htm codec = 'xm"'
XML Codec
This codec performs XML escaping and unescaping. It escapes & ,<,>,",",\W\, @, ",

non breaking space (\\u00a0), line separator (\\\u2028) and paragraph separator
(\Wu2029).

HTMLJSCodec
This codec performs HTML and JS encoding. It is used for preventing some DOM-XSS

vulnerabilities. See OWASP - DOM based XSS Prevention Cheat Sheet for guidelines of
preventing DOM based XSS attacks.

URL Codec

URL encoding is required when creating URLs in links or form actions, or any time datais
used to create aURL. It preventsillegal characters from getting into the URL and changing
its meaning, for example "Apple & Blackberry" is not going to work well as a parameter in
a GET request as the ampersand will break parameter parsing.

Example of usage:

Repeat | ast search
</ a>

Base64Codec

Performs Base64 encode/decode functions. Example of usage:

Your registration code is: ${user.registrati onCode. encodeAsBase64()}
JavaScriptCodec

Escapes Strings so they can be used as valid JavaScript strings. For example:

https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

El enent. updat e(' ${el enentid}"',
"${render (tenpl ate: "/common/ message").encodeAsJavaScript()}')

HexCodec

Encodes byte arrays or lists of integers to lowercase hexadecimal strings, and can decode
hexadecimal stringsinto byte arrays. For example:

Sel ected col our: #${[255, 127, 255] . encodeAsHex ()}
MD5Codec

Uses the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of astring (in
default system encoding), as alowercase hexadecimal string. Example of usage:

Your APl Key: ${user.uniquel D. encodeAsMD5()}

M D5BytesCodec

Uses the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of astring (in
default system encoding), as a byte array. Example of usage:

byte[] passwordHash = parans. password. encodeAsVD5Byt es()

SHA1Codec

Usesthe SHA1 agorithm to digest byte arrays or lists of integers, or the bytes of astring (in
default system encoding), as alowercase hexadecimal string. Example of usage:

Your APl Key: ${user.uniquel D. encodeAsSHAL()}

SHA1BytesCodec

Uses the SHA1 algorithm to digest byte arrays or lists of integers, or the bytes of astring (in
default system encoding), as a byte array. Example of usage:

byte[] passwordHash = parans. password. encodeAsSHA1Byt es()

SHA?256Codec

Uses the SHA 256 algorithm to digest byte arrays or lists of integers, or the bytes of a string
(in default system encoding), as a lowercase hexadecimal string. Example of usage:

Your APl Key: ${user.uniquel D. encodeAsSHA256() }
SHA256BytesCodec

Uses the SHA 256 algorithm to digest byte arrays or lists of integers, or the bytes of a string
(in default system encoding), as a byte array. Example of usage:

byte[] passwordHash = parans. password. encodeAsSHA256Byt es()
Custom Codecs

Applications may define their own codecs and Grails will load them along with the standard
codecs. A custom codec class must be defined in the grai 1 s-app/ uti1's/ directory and the class
name must end with codec. The codec may contain astatic encode ClOSUre, astatic decode
closure or both. The closure must accept a single argument which will be the object that the
dynamic method was invoked on. For Example:

cl ass PigLatinCodec {
static encode = { str ->
/1 convert the string to pig latin and return the result
}

}

With the above codec in place an application could do something like this:

${| ast Nanme. encodeAsPi gLatin()}

16.4 Authentication

Grails has no default mechanism for authentication asit is possible to implement
authentication in many different ways. It is however, easy to implement asimple
authentication mechanism using interceptors. Thisis sufficient for smple use cases but it's
highly preferable to use an established security framework, for example by using the Spring
Security or the Shiro plugin.

Interceptors let you apply authentication across all controllers or across a URI space. For
example you can create anew set of filtersin aclasscalled
grails-app/controllers/Securitylnterceptor.groovy by runni ng:

grails create-interceptor security

and implement your interception logic there:

class Securitylnterceptor {

Securitylnterceptor() {
mat chAl | ()
.except (controller:"user', action:'login")

bool ean before() {
if (!session.user && actionName != "login") {
redirect(controller: "user", action: "login")
return fal se

}

return true
}

Here the interceptor intercepts execution before all actions except 1 ogi n are executed, and if
there is no user in the session then redirect to the 1 ogi n action.

The 1 ogi n action itself is simple too:

def login() {
if (request.get) {
return // render the login view

}
def u = User.findByLogi n(parans.|ogin)
if (u) {
if (u.password == parans. password) {
session.user = u
redirect(action: "hone")
el se {
render(view "login", nodel: [nmessage: "Password incorrect"])
el se {
render (view "login", nodel: [message: "User not found"])
}
}

If you need more advanced functionality beyond simple authentication such as

authorization, roles etc. then you should consider using the spring security core plugin.

16.5.1 Spring Security

The Spring Security plugins are built on the Spring Security project which provides a
flexible, extensible framework for building all sorts of authentication and authorization
schemes. The plugins are modular so you can install just the functionality that you need for
your application. The Spring Security plugins are the official security plugins for Grails and
are actively maintained and supported.

Thereisa Spring Security Core plugin which supports form-based authentication,
encrypted/salted passwords, HTTP Basic authentication, etc. and secondary dependent
plugins provide alternate functionality such as ACL support, single sign-on with Jasig CAS,
L DAP authentication, Kerberos authentication, and a plugin providing user interface
extensions and security workflows.

See the Spring Security Core plugin page for basic information and user guide for detailed
information.

17 Plugins

Grailsisfirst and foremost aweb application framework, but it is also a platform. By
exposing a number of extension points that let you extend anything from the command line
interface to the runtime configuration engine, Grails can be customised to suit amost any
needs. To hook into this platform, al you need to do is create a plugin.

Extending the platform may sound complicated, but plugins can range from trivially simple
to incredibly powerful. If you know how to build a Grails application, you’'ll know how to
create a plugin for sharing a data model or some static resources.

17.1 Creating and I nstalling Plugins
Creating Plugins

Creating a Grails plugin is a simple matter of running the command:
grails create-plugin <<PLUG N NAME>>

Thiswill create aweb-plugin project for the name you specify. For example running grai i s
create-pl ugi n exampl e WOUld create a new web-plugin project called exanpl e.

In Grails 3.0 you should consider whether the plugin you create requires a web environment
or whether the plugin can be used with other profiles. If your plugin does not require aweb
environment then use the "plugin” profile instead of the default "web-plugin” profile:

grails create-plugin <<PLUG N NAME>> --profile=plugin

Make sure the plugin name does not contain more than one capital letter in arow, or it won't
work. Camel caseisfine, though.

Being aregular Grails project has a number of benefitsin that you can immediately test your
plugin by running (if the plugin targets the "web" profile):

https://spring.io/projects/spring-security
https://plugins.grails.org/plugin/grails/spring-security-core
https://plugins.grails.org/plugin/grails/spring-security-acl
https://plugins.grails.org/plugin/grails/spring-security-cas
https://plugins.grails.org/plugin/grails/spring-security-ldap
https://plugins.grails.org/plugin/grails/spring-security-kerberos
https://plugins.grails.org/plugin/grails/spring-security-ui
https://plugins.grails.org/plugin/grails/spring-security-ui
https://plugins.grails.org/plugin/grails/spring-security-core
https://grails.github.io/grails-spring-security-core/latest/index.html

./ gradl ew boot Run

Plugin projects don’'t provide an index.gsp by default since most plugins don’t need it. So,
if you try to view the plugin running in a browser right after creating it, you will receive a
page not found error. You can eaS|Iy create agrail s- app/ vi ews/ i ndex. gsp fOr your p| ugin if
you'd like.

The structure of a Grails plugin is very nearly the same as a Grails application project’s

except that in the src/ mai n/ gr covy directory under the plugin package structure you will find a
plugin descriptor class (aclass that endsin "GrailsPlugin™). For example:

inport grails.plugins.*
cl ass Exanpl eGrail sPlugin extends Plugin {

}

All plugins must have this class under the src/ mi n/ gr oovy directory, otherwise they are not
regarded as a plugin. The plugin class defines metadata about the plugin, and optionally
various hooks into plugin extension points (covered shortly).

Y ou can also provide additional information about your plugin using several special
properties:

® title - short one-sentence description of your plugin

® grailsversion - Theversion range of Grailsthat the plugin supports. eg. "1.2 > *" (indicating
1.2 or higher)

® author - plugin author’s name

® authoremail - plugin author’s contact e-mail

® devel opers - Any additional developers beyond the author specified above.
® gdescription - full multi-line description of plugin’s features

® docunentation - URL oOf the plugin’s documentation

® |icense - License of the plugin

® issuemanagenent - ISsue Tracker of the plugin

scm- Source code management location of the plugin

Hereis aslimmed down example from the Quartz Grails plugin:

package quartz

@l f 4j
class QuartzGailsPlugin extends Plugin {
/1 the version or versions of Gails the plugin is designed for
def grailsVersion = "3.0.0.BU LD SNAPSHOT > *"
/1 resources that are excluded from plugi n packagi ng
def plugi nExcl udes = [
"grail s-app/views/error.gsp"
]

def title = "Quartz" // Headline display name of the plugin
def author = "Jeff Brown"
def authorEmail = "zzz@yy. cont
def description = """\
Adds Quartz job scheduling features

def profiles = ['web']

List loadAfter = ['hibernate3', 'hibernated4', 'hibernate5 , 'services']
def docunentation = "http://grails.org/plugin/quartz"

def license = "APACHE"

https://github.com/grails-plugins/grails-quartz

def issueManagenent = [system "G thub |ssues", url: "http://github.conigrail s3-plugins/quartz/issues"]
def developers = [
[name: "Joe Dev", enmil: "joedev@mail.coni]
]
def scm= [url: "https://github.confgrails3-plugins/quartz/"]

Closure doWthSpring()......
Plugin Configuration

Instead of directly accessing Grails configuration as

grail sApplication.config.getProperty(' mail.hostNane', String), useaSpring Boot configuration
bean (or a POJO) annotated with ConfigurationProperties annotation. Here is an example
plugin configuration:

Jsrc/main/groovy/exampl e/Mail PluginConfiguration.groovy

package exanpl e
i mport org.springfranmework. boot. context. properties. ConfigurationProperties

@onfigurationProperties(prefix = "mail")
cl ass Mail Pl ugi nConfiguration {

String host Nanme

int port
String from

Y ou can inject the i 1 Pl ugi nconf i gurati on bean into your bean like any other bean.

Jgrails-app/services/example/Mail Service.groovy

package exanpl e

class Mil Service {
Mai | Pl ugi nConfi gurati on nail Pl ugi nConfi guration
voi d sendMail () {
}

}

Please read the Spring Boot Externalized Configuration section for more information.

Installing L ocal Plugins

In order to install the Grails plugin to your local Maven, you could use Gradle Maven
Publish plugin. Y ou may also need to configure the publishing extension as:

publ i shing {
publications {
maven(MavenPubl i cation) {
ver si onMappi ng {
usage('java-api') {
fronResol uti onOf (' runti meC asspath')
}

usage('java-runtinme') {
fronmResol uti onResul t ()
}
}

from conponents. j ava

Please refer to the Gradle Maven Publish plugin documentation for up-to-date information.

To make your plugin available for usein a Grails application run the . / gr adi ew
publ i shToMavenLocal command:

./ gradl ew publ i shToMavenLocal

https://docs.spring.io/spring-boot/docs/2.7.16/api/org/springframework/boot/context/properties/ConfigurationProperties.html
https://docs.spring.io/spring-boot/docs/2.7.16/reference/html/features.html#features.external-config
https://docs.gradle.org/current/userguide/publishing_maven.html
https://docs.gradle.org/current/userguide/publishing_maven.html

Thiswill install the plugin into your local Maven cache. Then to use the plugin within an
application declare a dependency on the plugin in your bui i d. gradi e file and include
mavenLocal () 1N your repositories hash:

repositories {

ﬁﬁ&enLocal()

}

i npl enentation "org.grails.plugins:quartz:0.1"

In Grails 2.x plugins were packaged as ZIP files, however in Grails 3.x plugins are simple
JAR files that can be added to the classpath of the IDE.

Plugins and Multi-Project Builds
If you wish to setup a plugin as part of amulti project build then follow these steps.
Step 1: Create the application and the plugin

Using the grai 1 s command create an application and a plugin:

$ grails create-app nyapp
$ grails create-plugin nyplugin

Step 2: Create a settings.gradlefile

In the same directory create aset tings. gradi e file with the following contents:
include "nyapp", "myplugin"

The directory structure should be as follows:

PRQIECT_DI R
- settings.gradle
- nyapp
- build.gradle
- nmyplugin
- build.gradle

Step 3: Declare a project dependency on the plugin

Within the vui 1 d. gr adi e Of the application declare a dependency on the plugin within the
pl ugi ns block:

grails {
pl ugins {
i mpl ement ation project(':nyplugin')
}

}

Y ou can aso declare the dependency within the dependenci es block, however you will not
get subproject reloading if you do this!

Step 4: Configurethe plugin to enablereloading

In the plugin directory, add or modify the gradi e. properties file. A new property expi oded=t r ue
needs to be set in order for the plugin to add the exploded directories to the classpath.

Step 5: Run the application

Now run the application using the . / gradi ew boot Run cOMmand from the root of the
application directory, you can use the verbose flag to see the Gradle output:

$ cd nyapp
$./gradl ew boot Run --verbose

Y ou will notice from the Gradle output that plugins sources are built and placed on the
classpath of your application:

:nypl ugi n: conpi | eAst Java UP- TO- DATE

:nypl ugi n: conpi | eAst Groovy UP- TO DATE
:nypl ugi n: processAst Resour ces UP- TO- DATE
:nypl ugi n: ast Cl asses UP- TO- DATE

:nypl ugi n: conpi | eJava UP- TO DATE

:nypl ugi n: confi gScri pt UP-TO DATE

:nypl ugi n: conpi | eG oovy

:nypl ugi n: copyAssets UP- TO- DATE

2 nypl ugi n: copyCommands UP- TO- DATE

:nypl ugi n: copyTenpl at es UP- TO DATE

:nypl ugi n: processResour ces

:nmyapp: conpi | eJava UP- TO- DATE

: nyapp: conpi | eG oovy

:nmyapp: processResour ces UP- TO DATE
:nyapp: cl asses

:nyapp: fi ndMai nCl ass

:myapp: boot Run

Gails application running at http://1ocal host:8080 in environment: devel opnent

Notes on excluded Artefacts

Although the create-plugin command creates certain files for you so that the plugin can be
run as a Grails application, not all of these files are included when packaging a plugin. The
following isalist of artefacts created, but not included by package-plugin:

® grails-app/build.gradle (although itisused to generate dependenci es. groovy)
® grails-app/conf/application yn (renamed to plugin.yml)
grail s-app/ conf/spring/resources. groovy
grail s-app/ conf/I ogback. gr oovy
® Everything within/src/test/**
® SCM management fileswithin «\+/. svn/=\+ and «\ */ cvs/ *\ *
Customizing the plugin contents

When developing a plugin you may create test classes and sources that are used during the
development and testing of the plugin but should not be exported to the application.

To exclude test sources you need to modify the pi ugi nexci udes property of the plugin
descriptor AND exclude the resources inside your bui 1 d. gradi e file. For example say you
have some classes under the com demo package that are in your plugin source tree but should
not be packaged in the application. In your plugin descriptor you should exclude these:

/'l resources that should be |oaded by the plugin once installed in the application
def plugi nExcl udes = [
"**[com deno/ **'

]

And in your bui 1 d. gradi e YOu should exclude the compiled classes from the JAR file:

jar {
excl ude "coni denp/ **/**"

}

Inline Pluginsin Grails 3.0

In Grails 2.x it was possible to specify inline plugins in sui I dconfi g, in Grails 3.x this

functionality has been replaced by Gradle’ s multi-project build feature.

To set up amulti project build create an appliation and a plugin in a parent directory:

$ grails create-app nyapp
$ grails create-plugin nyplugin

Then create asettings. gradi e file in the parent directory specifying the location of your
application and plugin:

include 'nyapp', 'nyplugin
Finally add a dependency in your application’Sbui 1 d. gradi e 0N the plugin:
i mpl ement ation project(':nyplugin')

Using this technique you have achieved the equivalent of inline plugins from Grails 2.x.

17.2 Plugin Repositories

Distributing Pluginsin the Grails Central Plugin Repository

The preferred way to distribute plugin is to publish to the official Grails Central Plugin
Repository. Thiswill make your plugin visible to the list-plugins command:

grails list-plugins

which lists all pluginsthat are in the central repository. Y our plugin will also be available to
the plugin-info command:

grails plugin-info [plugin-nane]

which prints extrainformation about it, such asits description, who wrote, etc.

If you have created a Grails plugin and want it to be hosted in the central repository, you'll
find instructions for getting an account on the plugin portal website.

17.3 Providing Basic Artefacts

Add Command Line Commands

A plugin can add new commands to the Grails 3.0 interactive shell in one of two ways. First,
using the create-script you can create a code generation script which will become available
to the application. The create-scri pt command will create the script in the src/ min/scripts
directory:

+ src/ main/scripts <-- additional scripts here
+ grails-app

+ controllers

+ services

+ etc.

Code generation scripts can be used to create artefacts within the project tree and automate
interactions with Gradle.

If you want to create a new shell command that interacts with aloaded Grails application
instance then you should use the cr eat e- command cOmmand:

$ grails create-command MyExanpl eCormand

http://plugins.grails.org/

Thiswill create afile called grai | s- app/ commands/ PACKAGE_PATH MyExanpl eCommand. gr oovy that
extends ApplicationCommand:

import grails.dev.conmands. *
cl ass MyExanpl eCommand i npl enents Applicati onComrand {
bool ean handl e(Executi onCont ext ctx) {

printin "Hello Wrld"
return true

}
}

AN Appl i cat i onCommand has access to the arai 1 sappi i cat i on iNStance and is subject to autowiring
like any other Spring bean.

Y ou can aso inform Grails to skip the execution of soot st rap. groovy fileswith asimple
property in your command:

cl ass MyExanpl eCommand i npl enents Applicati onConmand {
bool ean ski pBootstrap = true
bool ean handl e(Executi onCont ext ctx) {
} .

}

For each appl i cati oncormand present Grails will create a shell command and a Gradle task to
invoke the appl i cati onconmand. [N the above example you can invoke the wexanpl ecormand Class
using either:

$ grails ny-exanple

Or

$ gradl e nyExanpl e
The Grailsversion is al lower case hyphen separated and excludes the "Command" suffix.

The main difference between code generation scripts and appl i cat i oncommand instances is that
the latter has full access to the Grails application state and hence can be used to perform
tasks that interactive with the database, call into GORM etc.

In Grails 2.x Gant scripts could be used to perform both these tasks, in Grails 3.x code
generation and interacting with runtime application state has been cleanly separated.

Adding anew grails-app artifact (Controller, Tag Library, Service, etc.)

A plugin can add new artifacts by creating the relevant file within the grai 1 s-app tree.

+ grails-app
+ controllers <-- additional controllers here
+ services <-- additional services here
+ etc. <-- additional XXX here

Providing Views, Templatesand View resolution

When a plugin provides a controller it may also provide default viewsto be rendered. Thisis
an excellent way to modularize your application through plugins. Grails view resolution
mechanism will first look for the view in the application it isinstalled into and if that fails
will attempt to look for the view within the plugin. This means that you can override views
provided by a plugin by creating corresponding GSPs in the application’s gr ai I s- app/ vi ews
directory.

http://docs.grails.org/6.1.2/api/grails/dev/commands/ApplicationCommand.html

For example, consider a controller called sookcont rol 1 er that’s provided by an ‘amazon'’
plugin. If the action being executed isiist, Grailswill first look for aview called
grail s-app/ vi ews/ book/ | i st. gsp then if that failsit will look for the same view relative to the

plugin.

However if the view uses templates that are al'so provided by the plugin then the following
syntax may be necessary:

<g: render tenpl ate="fooTenpl ate" plugi n="anazon"/>

Note the usage of the pi ugi n attribute, which contains the name of the plugin where the
template resides. If thisis not specified then Grails will look for the template relative to the
application.

Excluded Artefacts

By default Grails excludes the following files during the packaging process.

°
grail s-app/ conf/ | ogback. gr oovy

® grails-app/conf/application. yn (renamed tO pl ugin. ym)
grail s-app/ conf/spring/resources. groovy
® Everythingwithin/src/test/*
® SCM management fileswithin «\+/. svn/=\+ and =\ */ cvs/ *\ *

The default ur1 mappi ngs. groovy file is not excluded, so remove any mappings that are not
required for the plugin to work. Y ou are also free to add a UrIMappings definition under a
different name which will be included. For example afile called

grails-app/controllers/Bl ogUr | Mappi ngs. gr oovy isfine.

Thelist of excludesis extensible with the pi ugi nexci udes property:

/1 resources that are excluded from plugin packagi ng
def plugi nExcludes = [
"grail s-app/views/error.gsp"

]

Thisisuseful for example to include demo or test resources in the plugin repository, but not
include them in the final distribution.

17.4 Evaluating Conventions

Before looking at providing runtime configuration based on conventions you first need to
understand how to evaluate those conventions from a plugin. Every plugin has an implicit
appl i cati on Variable which is an instance of the GrailsApplication interface.

The aai 1 sappli cati on iNterface provides methods to eval uate the conventions within the
project and internally stores references to all artifact classes within your application.

Artifacts implement the GrailsClass interface, which represents a Grails resource such as a
controller or atag library. For example to get all @ ai 1 sa ass instances you can do:

for (grailsCass in application.alld asses) {
println grailsd ass. name
}

http://docs.grails.org/6.1.2/api/grails/core/GrailsApplication.html
http://docs.grails.org/6.1.2/api/grails/core/GrailsClass.html

aail sApplication hasafew "magic" properties to narrow the type of artefact you are
interested in. For example to access controllers you can use:

for (controllerClass in application.controllerd asses) {
println controllerd ass. nane
}

The dynamic method conventions are as follows:

® :qgasses - Retrieves al the classes for a particular artefact name. For example

application.controllerd asses.

® get*dass - Retrieves anamed class for a particular artefact. For example

application.getControllerd ass("PersonController")

® is+aass - Returnstrue if the given classis of the given artefact type. For example

application.isControllerd ass(PersonController)

The @ ai 1 sa ass interface has a number of useful methods that let you further evaluate and
work with the conventions. These include:

® getPropertyval ue - Getstheinitial value of the given property on the class
® hLasproperty - Returnstrue if the class hasthe SpeCIfled property
® Lew nstance - Creates a new instance of this class.

® getname - Returns the logical name of the classin the application without the trailing
convention part if applicable

® getshort Name - Returns the short name of the class without package prefix

® getrull Nane - Returns the full name of the class in the application with the trailing convention
part and with the package name

® get PropertyNane - Returns the name of the class as a property name

® get Logi cal PropertyNane - Returns the logical property name of the class in the application
without the trailing convention part if applicable

® getnatural Name - Returns the name of the property in natural terms (e.g. 'lastName' becomes
'Last Name)

® get PackageNare - Returns the package name

For afull reference refer to the javadoc API.

17.5 Hooking into Runtime Configuration

Grails provides a number of hooksto leverage the different parts of the system and perform
runtime configuration by convention.

Hooking into the Grails Spring configur ation

First, you can hook in Grails runtime configuration overriding the dow t hspri ng method from
the Plugin class and returning a closure that defines additional beans. For example the

http://docs.grails.org/6.1.2/api/grails/core/GrailsClass.html
http://docs.grails.org/6.1.2/api/grails/plugins/Plugin.html

following snippet is from one of the core Grails plugins that provides i18n support:

i mport org.springfranework. web. servl et.i 18n. Cooki eLocal eResol ver

i nport org.springframework. web. servl et.i 18n. Local eChangel nt er cept or

i nport org.springframework. cont ext. support. Rel oadabl eResour ceBundl eMessageSour ce
import grails.plugins.*

class 118nG ail sPlugin extends Plugin {
def version = "0.1"
Closure doWthSpring() {{->
messageSour ce(Rel oadabl eResour ceBundl eMessageSour ce) {

basenane = "VEB- | NF/ grail s-app/i 18n/ nessages”

| ocal eChangel nt er cept or (Local eChangel nterceptor) {
paramNane = "l ang"

| ocal eResol ver (Cooki eLocal eResol ver)

1}
}

This plugin configures the Grails nessagesour ce bean and a couple of other beans to manage
Locale resolution and switching. It using the Spring Bean Builder syntax to do so.

Customizing the Servlet Environment

In previous versions of Grailsit was possible to dynamically modify the generated web. xni .
In Grails 3.x thereis no web. xni file and it is not possible to programmatically modify the
web. xn file anymore.

However, it is possible to perform the most commons tasks of modifying the Servlet
environment in Grails 3.x.

Adding New Servlets

If you want to add a new Servlet instance the smplest way is ssimply to define a new Spring
bean in the dow t hspri ng Method:

C osure dowWthSpring() {{->
nyServl et (MyServl et)
1}

If you need to customize the servlet you can use Spring Boot’ s ServletRegistrationBean:

Cl osure doWthSpring() {{->
nmySer vl et (Servl et Regi strati onBean, new MyServlet(), "/myServlet/*") {
| oadOnStartup = 2
}

1}

Adding New Servlet Filters

Just like Servlets, the ssmplest way to configure anew filter isto simply define a Spring
bean:

Cl osure doWthSpring() {{->
nyFilter(MFilter)
1}

However, if you want to control the order of filter registrations you will need to use Spring
Boot’s FilterRegistrationBean:

nyFilter(FilterRegistrationBean) {
filter = bean(MFilter)
urlPatterns = ['/*"]
order = O dered. H GHEST_PRECEDENCE

Grails internd registered filters (Gr ai | sWebRequest Fi | t er, Hi ddenHt t pMet hodFi | t er etC.) are
defined by incrementing w aest_precepence by 10 thus allowing several filtersto be inserted

http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/context/embedded/ServletRegistrationBean.html
http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/web/servlet/FilterRegistrationBean.html

before or between Grails filters.

Doing Post Initialisation Configuration

Sometimes it is useful to be able do some runtime configuration after the Spring
ApplicationContext has been built. In this case you can define a dow t happl i cat i onCont ext
closure property.

class Si npl ePl ugi n extends Pl ugi n{

def nane = "sinple"
def version = "1.1"
@verride

void doW thApplicationContext() {
def sessionFactory = applicationContext.sessionFactory
/1 do something here with session factory

}
}

17.6 Adding M ethods at Compile Time

Grails 3.0 makes it easy to add new traits to existing artefact types from a plugin. For
example say you wanted to add methods for manipulating dates to controllers. This can be
done by deflnlng atrait in src/ main/ groovy:

package nypl ugin

@nhances(" Control ler")
trait DateTrait {
Date currentDate() {
return new Date()

}
}

The @nnances annotation defines the types of artefacts that the trait should be applied to.

As an alternative to using the @nhances annotation above, you can implement a Traitlnjector
to tell Grails which artefacts you want to inject the trait into at compile time:

package nypl ugin

@Conpi | eStatic
class ControllerTraitlnjector inplenents Traitlnjector {

@verride

Class getTrait() {
SoneTr ai t

}

@verride

String[] getArtefactTypes() {
["Controller'] as String[]

}

}

The above Trait1 nj ect or will add the sonetrait to all controllers. The get Art ef act Types method
defines the types of artefacts that the trait should be applied to.

Applying traits conditionally

A Traitinjector iImplementation can also implement the SupportsClassNode interface to
apply traits to only those artefacts which satisfy a custom requirement. For example, if a
trait should only be applied if the target artefact class has a specific annotation, it can be
done as below

package nypl ugin

@Conpi | eStatic
cl ass Annot ati onBasedTraitlnjector inplenents Traitlnjector, SupportsC assNode {

@verride

https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/context/ApplicationContext.html
http://docs.grails.org/6.1.2/api/grails/compiler/traits/TraitInjector.html
http://docs.grails.org/6.1.2/api/grails/compiler/ast/SupportsClassNode.html

Class getTrait() {
SoneTr ai t
}

@verride

String[] getArtefactTypes() {
["Controller'] as String[]

}

bool ean supports(C assNode cl assNode) {
return Grail sASTUi | s. hasAnnot ati on(cl assNode, SoneAnnot ati on)

}
}

Above Trai t1njector Will add the soneTrait to only those controllers which has the
SomeAnnot at i on declared.

The framework discovers trait injectors by way of anera- 1N/ grails. factories descriptor that
isinthe jar file. This descriptor is automatically generated. The descriptor generated for the
code shown above would look like this:

#CGrails Factories File
grails.conpiler.traits. Traitlnjector=
nypl ugi n. Control l erTrai tlnjector, myplugin.DateTraitTraitlnjector

Due to formatting issues, above code snippet includes aline break after equal sign.

That file is generated automatically and added to the .jar file at build time. If for any reason
the application definesitsown graiis. factories fileat

src/ mai n/ resour ces/ META- I NF/ grai | s. fact ori es, It ISTmMportant that the trait injectors be explicitly
defined in that file. The auto-generated metadatais only reliable if the application does not
define its OWnN src/ mai n/ r esour ces/ META- | NF/ grails.factores file.

17.7 Adding Dynamic Methods at Runtime

The Basics

Grails plugins let you register dynamic methods with any Grails-managed or other class at
runtime. Thiswork isdone in a dow t hoynani ciet hods Method.

Note that Grails 3.x features newer features such as traits that are usable from code
compiled with compi 1 estati c. It is recommended that dynamic behavior is only added for
cases that are not possible with traits.
cl ass Exanpl ePl ugi n extends Plugin {
voi d doW t hDynami cMet hods() {

for (controllerClass in grailsApplication.controllerC asses) {
control |l erd ass. netad ass. myNewMet hod = {-> println "hello world" }
}

}

In this case we use the implicit application object to get areference to al of the controller
classes MetaClass instances and add a new method called nynewvet hod t0 €ach controller. If
you know beforehand the class you wish the add a method to you can simply reference its
metadl ass property.

For example we can add a new method swapcase t0j ava. I ang. string:

cl ass Exanpl ePl ugi n extends Plugin {

@verride
voi d doW t hDynami cMet hods() {
String. net adl ass. swapCase = {->
def sb = new StringBuilder()
del egat e. each {
sb << (Character.isUpperCase(it as char) ?
Character.toLowerCase(it as char) :

Character.toUpperCase(it as char))

}
sb.toString()
}

assert "UpAndDown" == "uPaNDdOMW'. swapCase()

}

I nteracting with the ApplicationContext

The dowit hDynami cMet hods closure gets passed the Sprl Ng Appl i cat i onCont ext instance. Thisis
useful asit lets you interact with objects within it. For example if you were implementing a
method to interact with Hibernate you could use the sessi onFact ory instance in combination
with aHi ber nat eTenpl at e

import org.springfranework. orm hi ber nat e3. Hi ber nat eTenpl at e
cl ass Exanpl eH ber nat ePl ugi n extends Pl ugi n{
voi d doW t hDynami cMet hods() {
for (domainC ass in grailsApplication.domainC asses) {

domai nd ass. net ad ass. static.load = { Long id->
def sf = applicationContext.sessionFactory
def tenplate = new Hi bernateTenpl at e(sf)
tenpl ate. | oad(del egate, id)

}
}

Also because of the autowiring and dependency injection capability of the Spring container
you can implement more powerful dynamic constructors that use the application context to
wire dependencies into your object at runtime:

class MyConstructorPlugin {

voi d doWt hDynam cMet hods()
for (domminC ass in grail sApplication.domainC asses) {
domai nCl ass. et adl ass. constructor = {->
return applicationContext.getBean(domai nCl ass. nane)
}

}

Here we actually replace the default constructor with one that 1ooks up prototyped Spring
beans instead!

17.8 Participating in Auto Reload Events

Monitoring Resour ces for Changes

Often it is valuable to monitor resources for changes and perform some action when they
occur. Thisis how Grailsimplements advanced reloading of application state at runtime. For
example, consider this ssimplified snippet from the Grails ser vi cespi ugi n:

class ServicesGrail sPlugin extends Plugin {

def wat chedResources = "file:./grails-app/services/**/*Service.groovy"

voi d onChange(Map<String, Object> event) {
if (event.source) {

def serviceC ass = grail sApplication.addServiced ass(event. source)

def serviceName = "${serviceC ass. propertyNane}"

beans {
"$servi ceNane" (servi ced ass. get G azz()) { bean ->

bean.autowire = true

}

}
}
}

First it defines vat chedresour ces as either a String or a List of strings that contain either the
references or patterns of the resources to watch. If the watched resources specify a Groovy
file, when it is changed it will automatically be reloaded and passed into the onchange Closure
in the event Object.

The event Object defines a number of useful properties:
® .cvent.source - The source of the event, either the reloaded a ass or a Spring resour ce
event. ctx - The Spring appi i cati oncont ext iNSstance
event . pl ugi n - The plugin object that manages the resource (usualy this)
® cvent.application - Th@aailsapplication iNStance
® cvent.manager - The G ail sPlugi nvanager iNstance
These objects are available to help you apply the appropriate changes based on what

changed. In the "Services' example above, a new service bean isre-registered with the
Appl i cati oncont ext When one of the service classes changes.

Influencing Other Plugins
In addition to reacting to changes, sometimes a plugin needs to "influence" another.

Take for example the Services and Controllers plugins. When a service is reloaded, unless
you reload the controllers too, problems will occur when you try to auto-wire the reloaded
service into an older controller Class.

To get around this, you can specify which plugins another plugin "influences'. This means
that when one plugin detects a change, it will reload itself and then reload its influenced
plugins. For example consider this snippet from the ser vi cesa ai 1 spi ugi n:

def influences = ['controllers']
Observing other plugins

If thereis a particular plugin that you would like to observe for changes but not necessary
watch the resources that it monitors you can use the "observe" property:

def observe = ["controllers"]

In this case when a controller is changed you will also receive the event chained from the
controllers plugin.

It isalso possible for a plugin to observe all loaded plugins by using a wildcard:

def observe = ["*"]

The Logging plugin does exactly this so that it can add the 1 og property back to any artefact
that changes while the application is running.

17.9 Understanding Plugin Load Order

Controlling Plugin Dependencies

Plugins often depend on the presence of other plugins and can adapt depending on the
presence of others. Thisisimplemented with two properties. Thefirst is called dependsan. For
example, take alook at this snippet from the Hibernate plugin:

class Hi bernateGail sPlugin {
def version = "1.0"

def dependsOn = [dataSource: "1.0",
domai nd ass: "1.0",
i18n: "1.0",
core: "1.0"]

}

The Hibernate plugin is dependent on the presence of four plugins: the dat asour ce, domai nd ass,
i 18n @nd core plugins.

The dependencies will be loaded before the Hibernate plugin and if all dependencies do not
load, then the plugin will not load.

The dependson property also supports a mini expression language for specifying version
ranges. A few examples of the syntax can be seen below:

def dependsOn = [foo: "* > 1.0"]
def dependsOn = [foo: "1.0 > 1.1"]
def dependsOn = [foo: "1.0 > *"]

When the wildcard * character is used it denotes "any" version. The expression syntax also
excludes any suffixes such as-BETA, -ALPHA etc. so for example the expression "1.0 >
1.1" would match any of the following versions:

* 11

* 10

* 101

¢ 1.0.3-SNAPSHOT

* 11-BETAZ2
Controlling Load Order

Using dependson establishes a"hard" dependency in that if the dependency is not resolved, the
plugin will give up and won't load. It is possible though to have a weaker dependency using
the 1 oadafter and 1 oadBef ore properti&:

def loadAfter = ['controllers']

Here the plugin will be loaded after the controi1ers plugin if it exists, otherwise it will just be
loaded. The plugin can then adapt to the presence of the other plugin, for example the
Hibernate plugin has this code in its dow t hspring Closure:

if (manager?. hasGail sPlugin("controllers")) {
openSessi onl nVi ewl nt er cept or (OpenSessi onl nVi em nt erceptor) {
flushMode = Hi ber nat eAccessor. FLUSH MANUAL
sessi onFactory = sessionFactory

grail sUrl Handl er Mappi ng. i nterceptors << openSessi onl nVi ew nt er cept or

}

Here the Hibernate plugln will onIy register an opensessi onl nvi ew ntercept or 1f th€controllers
plugin has been loaded. The ranager variable is an instance of the Grail sPluginM anager

http://docs.grails.org/6.1.2/api/grails/plugins/GrailsPluginManager.html

interface and it provides methods to interact with other plugins.

Y ou can aso use the 1 oadsef or e property to specify one or more plugins that your plugin
should load before:

def | oadBefore = ['rabbitng']
Scopes and Environments
It's not only plugin load order that you can control. Y ou can also specify which

environments your plugin should be loaded in and which scopes (stages of a build). Simply
declare one or both of these propertiesin your plugin descriptor:

def environments = ['devel opment', 'test', 'nyCustonEnv']
def scopes = [excludes: ' war']

In this example, the plugin will only load in the 'development' and 'test' environments. Nor
will it be packaged into the WAR file, because it’s excluded from the 'war' phase. This
allows devel oprrent - onl y plugins to not be packaged for production use.
The full list of available scopes are defined by the enum BuildScope, but here’s a summary:
® test - When running tests
® functional -test - When running functional tests
® un - for run-app and run-war
® war - When packaging the application asa WAR file
® a1 - plugin appliesto al scopes (default)
Both properties can be one of:
® astring - asoleinclusion

® alist - alist of environments or scopes to include

® amap - for full control, with ‘includes and/or 'excludes keys that can have string or list
values

For example,

def environnents = "test"

will only include the plugin in the test environment, whereas

def environnents = ["devel opment”, "test"]

will include it in both the development and test environments. Finally,

def environments = [includes: ["devel opment", "test"]]

will do the same thing.

17.10 The Artefact API

Y ou should by now understand that Grails has the concept of artefacts: special types of
classes that it knows about and can treat differently from normal Groovy and Java classes,

http://docs.grails.org/6.1.2/api/grails/util/BuildScope.html

for example by enhancing them with extra properties and methods. Examples of artefacts
include domain classes and controllers. What you may not be aware of isthat Grails allows
application and plugin developers access to the underlying infrastructure for artefacts, which
means you can find out what artefacts are available and even enhance them yourself. Y ou
can even provide your own custom artefact types.

17.10.1 Asking About Available Artefacts

Asaplugin developer, it can be important for you to find out about what domain classes,
controllers, or other types of artefact are available in an application. For example, the
Elasticsearch plugin needs to know what domain classes exist so it can check them for any
sear chabl e properties and index the appropriate ones. So how doesit do it? The answer lies
with the grai 1 sappl i cati on Object, and instance of GrailsApplication that’s available
automatically in controllers and GSPs and can be injected everywhere else.

The grai 1 sappli cati on Object has several important properties and methods for querying
artefacts. Probably the most common is the one that gives you all the classes of a particular
artefact type:

for (cls in grailsApplication.<artefactType>O asses) {

}

In this case, artef act Type iSthe property name form of the artefact type. With core Grails you
have:

¢ domain

¢ controller

® tagLib

® service

® codec

® Dbootstrap

* urlMappings

So for example, if you want to iterate over all the domain classes, you use:

for (cls in grailsApplication.domai nC asses) {

}

and for URL mappings:

for (cls in grailsApplication.url MappingsC asses) {

}

Y ou need to be aware that the objects returned by these properties are not instances of Class.
Instead, they are instances of GrailsClass that has some particularly useful properties and
methods, including one for the underlying a ass:

® shortnare - the class name of the artefact without the package (equivalent of a ass. si npl enane).

® | ogical PropertyNare - the artefact name in property form without the 'type' suffix. So
MG eat Control | er DECOMES 'myGreat'.

https://grails.org/plugins.html#plugin/elasticsearch
http://docs.grails.org/6.1.2/api/grails/core/GrailsApplication.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Class.html
http://docs.grails.org/6.1.2/api/grails/core/GrailsClass.html

® ismstract() - aboolean indicating whether the artefact class is abstract or not.

® getPropertyval ue(nane) - returnsthe value of the given property, whether it'sastatic or an
instance one. Thisworks best if the property isinitialised on declaration, e.g. static

transactional = true.

The artefact API also allows you to fetch classes by name and check whether aclassisan
artefact:

® get<type>Class(String name)
¢ js<type>Class(Class clazz)

The first method will retrieve the aai 1 sa ass instance for the given name, e.g.
'MyGreatController'. The second will check whether a classis a particular type of artefact.
For example, YOU CaN USE grai | sAppl i cation.isControllerd ass(org. exanpl e. M/Great Control | er) tO
check whether wa eat controt 1 er 1Sin fact a controller.

17.10.2 Adding Your Own Artefact Types

Plugins can easily provide their own artefacts so that they can easily find out what
implementations are available and take part in reloading. All you need to do is create an
Artef act Handl er 1Mplementation and register it in your main plugin class:

class MyGrail sPlugin {
def artefacts = [org.somewhere. MArt ef act Handl er]

}

Theartefacts list can contain either handler classes (as above) or instances of handlers.

So, what does an artefact handler ook like? Well, put ssmply it is an implementation of the
ArtefactHandler interface. To make life abit easier, there is a skeleton implementation that
can readily be extended: ArtefactHandlerAdapter.

In addition to the handler itself, every new artefact needs a corresponding wrapper class that
implements GrailsClass. Again, skeleton implementations are available such as
AbstractinjectableGrailsClass, which is particularly useful asit turns your artefact into a
Spring bean that is auto-wired, just like controllers and services.

The best way to understand how both the handler and wrapper classes work isto look at the
Quartz plugin:

® GrailsJobClass
® DefaultGrailsJobClass

* JobArtefactHandler

Another example is the Shiro plugin which adds arealm artefact.

18 Grailsand Spring

This section is for advanced users and those who are interested in how Grails integrates with
and builds on the Spring Framework. It is aso useful for plugin developers considering

http://docs.grails.org/6.1.2/api/grails/core/ArtefactHandler.html
http://docs.grails.org/6.1.2/api/grails/core/ArtefactHandlerAdapter.html
http://docs.grails.org/6.1.2/api/grails/core/GrailsClass.html
http://docs.grails.org/6.1.2/api/org/grails/core/AbstractInjectableGrailsClass.html
https://github.com/grails-plugins/grails-quartz/blob/master/src/main/groovy/grails/plugins/quartz/GrailsJobClass.java
https://github.com/grails-plugins/grails-quartz/blob/master/src/main/groovy/grails/plugins/quartz/DefaultGrailsJobClass.java
https://github.com/grails-plugins/grails-quartz/blob/master/src/main/groovy/grails/plugins/quartz/JobArtefactHandler.groovy
http://github.com/pledbrook/grails-shiro
http://spring.io/

doing runtime configuration Grails.

18.1 Configuring Additional Beans
Using the Spring Bean DSL

Y ou can easily register new (or override existing) beans by configuring themin
grai | s-app/ conf/spri ng/ resour ces. gr oovy Which uses the Grai Is_&gri ng DSl .. Beans are defined
inside abeans property (a Closure):

beans = {
/] beans here
}

As asimple example you can configure a bean with the following syntax:

i nport my. conpany. MyBeanl npl

beans = {

nmyBean(MyBeanl npl) {
someProperty = 42
ot her Property = "bl ue"

}

Once configured, the bean can be auto-wired into Grails artifacts and other classes that
support dependency injection (for example soot st r ap. gr covy and integration tests) by
declaring a public field whose name is your bean’s name (in this case nygean):

cl ass Exanpl eController {
def nyBean
}

Using the DSL has the advantage that you can mix bean declarations and logic, for example
based on the environment:

inmport grails.util.Environnment
i mport ny.conpany. nock. Mockl npl
i mport ny. conpany. MyBeanl npl

beans = {
swi t ch(Envi ronnment . current) {
case Environment. PRODUCTI ON:
nmyBean(MyBeanl npl) {
someProperty = 42
ot her Property = "bl ue"

br eak

case Environment. DEVELOPMENT:
nyBean(Mockl npl) {
someProperty = 42
ot her Property = "bl ue"
}

br eak

}

The arai 1 sappli cati on Object can be accessed with the appi i cati on Variable and can be used to
access the Grails configuration (amongst other things):

inmport grails.util.Environment
i mport ny. conpany. nock. Mockl npl
i nport my. conpany. MyBeanl npl

beans = {
if (application.config.getProperty('ny.conpany.nockService')) {
nmyBean(Mockl npl) {
someProperty = 42
ot her Property = "bl ue"

} else {

nyBean(MyBeanl npl) {
soneProperty = 42
ot her Property = "bl ue"

If you define abean in resour ces. groovy With the same name as one previously registered by
Grails or an installed plugin, your bean will replace the previous registration. Thisisa
convenient way to customize behavior without resorting to editing plugin code or other
approaches that would affect maintainability.

Using XML

Beans can also be Configured using Qgrails-app/conf/spring/resources.xm . IN earlier versions
of Grailsthisfile was automatically generated for you by the run- app Script, but the DSL in
resour ces. groovy 1S the preferred approach now so it isn't automatically generated now. But it
isstill supported - you just need to create it yourself.

Thisfileistypical Spring XML file and the Spring documentation has an excellent reference
on how to configure Spring beans.

The nysean bean that we configured using the DSL would be configured with this syntax in
the XML file:

<bean i d="nyBean" cl ass="ny. conpany. MyBeanl npl ">
<property name="soneProperty" val ue="42" />
<property nane="ot her Property" val ue="bl ue" />
</ bean>

Like the other bean it can be auto-wired into any class that supports dependency injection:

cl ass Exanpl eControl ler {

def nyBean
}

Referencing Existing Beans

Beans declared in resour ces. groovy OF resources. xni Can reference other beans by convention.
For example if you had a sookser vi ce Class its Spring bean name would be bookser vi ce, SO your
bean would referenceit like thisin the DSL:

beans = {
nmyBean(MyBeanl npl) {
someProperty = 42
ot her Property = "bl ue"
bookService = ref("bookService")

}

or likethisin XML:

<bean id="nyBean" cl ass="ny. conpany. MyBeanl npl ">
<property nane="sonmeProperty" val ue="42" />
<property nane="ot her Property" val ue="bl ue" />
<property nane="bookService" ref="bookService" />
</ bean>

The bean needs a public setter for the bean reference (and also the two simple properties),
which in Groovy would be defined like this:

package ny.conpany

cl ass MyBeanl mpl {
I nt eger soneProperty
String otherProperty
BookSer vi ce bookService // or just "def bookService"

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/beans.html#beans-basics

or in Javalikethis:

package my. conpany;

cl ass MyBeanl mpl {
private BookService bookServi ce;
private Integer someProperty;
private String otherProperty;

public void setBookServi ce(BookService theBookService) {
t hi s. bookServi ce = t heBookServi ce;
}

public void set SoneProperty(lnteger someProperty) {
this.someProperty = someProperty;

public void set Ot herProperty(String otherProperty) {
this.otherProperty = otherProperty;
}
}

Usingref (in XML or the DSL) is very powerful since it configures a runtime reference, so
the referenced bean doesn’t have to exist yet. Aslong asit’sin place when the final
application context configuration occurs, everything will be resolved correctly.

For afull reference of the available beans see the plugin reference in the reference guide.

18.2 Runtime Spring with the Beans DSL

This Bean builder in Grails aims to provide asimplified way of wiring together
dependencies that uses Spring at its core.

In addition, Spring’s regular way of configuration (via XML and annotations) is static and
difficult to modify and configure at runtime, other than programmatic XML creation which
is both error prone and verbose. Grails BeanBuilder changes all that by making it possible
to programmatically wire together components at runtime, allowing you to adapt the logic
based on system properties or environment variables.

This enables the code to adapt to its environment and avoids unnecessary duplication of
code (having different Spring configs for test, development and production environments)

The BeanBuilder class

Grails provides a grails.spring.BeanBuilder class that uses dynamic Groovy to construct
bean definitions. The basics are as follows:

i nport org. apache. commons. dbcp. Basi cDat aSour ce

import org.grails.orm hibernate. Configurabl eLocal Sessi onFact or yBean
i mport org.springfranmework. cont ext. Appl i cati onCont ext

inport grails.spring.BeanBuil der

def bb = new BeanBui | der ()

bb. beans {
dat aSour ce(Basi cDat aSour ce) {
driverd assName = "org. h2.Driver"
url = "jdbc: h2: nem grail sDB"
username = "sa"
password = ""

}

sessi onFact ory(Confi gur abl eLocal Sessi onFact or yBean) {
dat aSource = ref (' dataSource')
hi ber nat eProperti es = ["hi bernate. hbn2ddl . auto": "create-drop",
"hi ber nat e. show_sql ": "true"]

}
Appl i cati onCont ext appCont ext = bb. createApplicationContext ()

http://docs.grails.org/6.1.2/api/grails/spring/BeanBuilder.html
http://docs.grails.org/6.1.2/api/grails/spring/BeanBuilder.html

Within p| Ugl ns and the grai | s-app/ conf/spring/resources. gr oovy fileyou don’'t need to create a
new instance of seansui I der . INStead the DSL isimplicitly available inside the dow t hspring
and beans blocks respectively.

This example shows how you would configure Hibernate with a data source with the
BeanBui | der Class.

Each method call (in this case dat asour ce @nd sessi onFact ory callS) maps to the name of the
bean in Spring. The first argument to the method is the bean’s class, whilst the last argument
isablock. Within the body of the block you can set properties on the bean using standard
Groovy syntax.

Bean references are resolved automatically using the name of the bean. This can be seenin
the example above with the way the sessi onFact ory bean resolves the dat asour ce reference.

Certain special properties related to bean management can also be set by the builder, as seen
in the following code:

sessi onFact ory(Confi gur abl eLocal Sessi onFact oryBean) { bean ->
/1 Autow ring behaviour. The other option is 'byType'. <<autow re>>

bean. autowi re = ' byNane'
/] Sets the initialisation method to "init'. [init-method]
bean.initMethod = "init'

/] Sets the destruction nethod to 'destroy'. [destroy-nethod]
bean. destroyMet hod = ' destroy'
/Il Sets the scope of the bean. <<scope>>

bean. scope = 'request’
dat aSource = ref (' dataSource')
hi ber nat eProperti es = ["hi bernate. hbn2ddl . auto": "create-drop",

"hi ber nat e. show_sql ": "true"]

}

The strings in square brackets are the names of the equivalent bean attributesin Spring’'s
XML definition.

Using BeanBuilder with SpringMVC

Include the grai I s-spring-<version>.jar filein your classpath to use BeanBuilder in aregular
Spring MV C application. Then add the following <cont ext - par am Values to your
/ VEB- | NF/ web. xni fil€:

<cont ext - par anp

<par am nane>cont ext Confi gLocat i on</ par am nane>

<par am val ue>/ VEB- | NF/ appl i cat i onCont ext . gr oovy</ param val ue>
</ cont ext - par an®

<cont ext - par anp
<par am nane>cont ext O ass</ par am nane>
<param val ue>
grails.web. servlet.context. G ail sWebAppl i cati onCont ext
</ par am val ue>
</ cont ext - par an®>

Then create a/ ves- | NF/ appl i cati onCont ext . gr oovy file that does the rest:

i nport org. apache. commons. dbcp. Basi cDat aSour ce

beans {
dat aSour ce(Basi cDat aSour ce) {
driverd assName = "org. h2.Driver"

url = "jdbc: h2: nem grail sDB"
usernane = "sa"
password = ""

}
L oading Bean Definitions from the File System

Y ou can use the seansui 1 der Classto load external Groovy scripts that define beans using the
same path matching syntax defined here. For example:

def bb = new BeanBui | der ()
bb. | oadBeans(" cl asspat h: * Spri ngBeans. gr oovy")

def applicati onContext = bb.createApplicationContext()

Here the Beansui 1 der 10ads all Groovy files on the classpath ending with spri nggeans. gr oovy and
parses them into bean definitions. An example script can be seen below:

i nport org. apache. commons. dbcp. Basi cDat aSour ce
inport org.grails.orm hibernate. Configurabl eLocal Sessi onFact or yBean
beans {
dat aSour ce(Basi cDat aSour ce) {
driverd assName = "org. h2.Driver"
url = "jdbc: h2: mrem grail sDB"
username = "sa"

password = ""

}

sessi onFact ory(Confi gur abl eLocal Sessi onFact oryBean) {
dat aSour ce = dat aSource
hi ber nat eProperties = ["hi bernate. hbnRddl . auto": "create-drop",
"hi ber nat e. show_sql ": "true"]

}

Adding Variablesto the Binding (Context)

If you' re loading beans from a script you can set the binding to use by creating a Groovy
Bi ndi ng.
def binding = new Bi ndi ng()

bi ndi ng. maxSi ze = 10000
bi ndi ng. product Group = 'finance'

def bb = new BeanBui | der ()
bb. bi ndi ng = bi ndi ng
bb. | oadBeans(" cl asspat h: *Spri ngBeans. gr oovy")

def ctx = bb.createApplicationContext()

Then you can access the naxsi ze and product & oup propertiesin your DSL files.

18.3 The BeanBuilder DSL Explained

Using Constructor Arguments

Constructor arguments can be defined using parameters to each bean-defining method. Put
them after the first argument (the Class):

bb. beans {
exanpl eBean(MyExanpl eBean, "firstArgument", 2) {
soneProperty = [1, 2, 3]
}

}

This configuration corresponds to a wexanpl eBean With a constructor that looks like this:

MyExanpl eBean(String foo, int bar) {
}

Configuring the BeanDefinition (Using factory methods)

The first argument to the closure is areference to the bean configuration instance, which you
can use to configure factory methods and invoke any method on the AbstractBeanDefinition
class:

bb. beans {

https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/beans/factory/support/AbstractBeanDefinition.html

exanpl eBean(MyExanpl eBean) { bean ->
bean. f act oryMet hod = "getl nstance"
bean. singl eton = fal se
someProperty = [1, 2, 3]
}
}

As an alternative you can also use the return value of the bean defining method to configure
the bean:

bb. beans {
def exanpl e = exanpl eBean(MyExanpl eBean) {
soneProperty = [1, 2, 3]

exanpl e. factoryMet hod = "get | nst ance"

}

Using Factory beans

Spring defines the concept of factory beans and often a bean is created not directly from a
new instance of a Class, but from one of these factories. In this case the bean has no Class
argument and instead you must pass the name of the factory bean to the bean defining
method:

bb. beans {
nmyFact or y(Exanpl eFact or yBean) {
soneProperty = [1, 2, 3]
}
nyBean(nyFactory) {

nanme = "bl ah"
}

}

Another common approach is provide the name of the factory method to call on the factory
bean. This can be done using Groovy’s named parameter syntax:

bb. beans {
nmyFact or y(Exanpl eFact or yBean) {
soneProperty = [1, 2, 3]
}
nyBean(nyFactory: "getlnstance") {

nane = "bl ah"
}

}

Here the get | nst ance method on the Exanpl eFact or yBean bean will be called to create the nyBean
bean.

Creating Bean References at Runtime

Sometimes you don’t know the name of the bean to be created until runtime. In this case
you can use a string interpolation to invoke a bean defining method dynamically:

def beanNarme = "exanpl e"

bb. beans {

" ${ beanNane} Bean" (MyExanpl eBean) {
someProperty = [1, 2, 3]
}

}

In this case the beannare Variable defined earlier is used when invoking a bean defining
method. The example has a hard-coded value but would work just as well with a name that
is generated programmatically based on configuration, system properties, etc.

Furthermore, because sometimes bean names are not known until runtime you may need to
reference them by name when wiring together other beans, in this case using the ret method:

def beanNane = "exanpl e"

bb. beans {
" ${ beanNane} Bean" (MyExanpl eBean) {
someProperty = [1, 2, 3]
}

anot her Bean(Anot her Bean) {
exanpl e = ref ("${beanNane} Bean")

}

Here the example property of anot her Bean IS Set using a runtime reference to the exanpi egean.
Theret method can also be used to refer to beans from a parent appl i cati oncont ext that is
provided in the constructor of the seansui | der:

Appl i cati onContext parent = ...//
def bb = new BeanBui | der (parent)
bb. beans {

anot her Bean(Anot her Bean) {
exanmpl e = ref ("${beanNane}Bean", true)
}

}

Here the second parameter «rue Specifies that the reference will 1ook for the bean in the
parent context.

Using Anonymous (I nner) Beans

Y ou can use anonymous inner beans by setting a property of the bean to ablock that takes
an argument that is the bean type:

bb. beans {

mar ge(Person) {
name = "Marge"
husband = { Person p ->
name = "Honmer"
age = 45
props = [overwei ght: true, height: "1.8nf]

children = [ref("bart'), ref('lisa")]

bart (Person) {

nane = "Bart"
age = 11

}

lisa(Person) {
name = "Lisa"
age = 9

}

}

In the above example we set the mar ge bean’ s husband property to ablock that creates an
inner bean reference. Alternatively if you have a factory bean you can omit the type and just
use the specified bean definition instead to setup the factory:

bb. beans {
per sonFact or y(Per sonFact ory)

mar ge(Person) {

name = "Marge"

husband = { bean ->
bean. f act oryBean = "personFactory"
bean. f act oryMet hod = "new nst ance"
name = "Honmer"
age = 45

props = [overwei ght: true, height: "1.8nf]
}
children = [ref('bart'), ref('lisa")]

}

Abstract Beans and Parent Bean Definitions

To create an abstract bean definition define a bean without a a ass parameter:

class Hol yGrail Quest {

def start() { println "lets begin" }
}
cl ass Kni ght Of TheRoundTabl e {

String name

String | eader

Hol yGrai | Quest quest

Kni ght O TheRoundTabl e(String nane) {

thi s. nane = nane
}

def enbarkOnQuest () {
quest.start()
}

}

import grails.spring.BeanBuil der

def bb = new BeanBui |l der ()

bb. beans {
abstract Bean {
| eader = "Lancel ot"
}
}

Here we define an abstract bean that has ai eader property with the value of “Lancet ot . TO use
the abstract bean set it as the parent of the child bean:

bb. beans {
dﬁést (Hol yGrai | Quest)
kni ght s(Kni ght O TheRoundTabl e, "Canelot") { bean ->

bean. parent = abstract Bean
quest = ref (' quest')

When using a parent bean you must set the parent property of the bean before setting any
other properties on the bean!

If you want an abstract bean that has a a ass specified you can do it this way:

inport grails.spring.BeanBuil der

def bb = new BeanBui | der ()
bb. beans {

abst ract Bean(Kni ght Of TheRoundTabl e) { bean ->
bean. ' abstract' = true
| eader = "Lancel ot"

}

quest (Hol yGrai | Quest)

kni ghts("Canel ot") { bean ->
bean. parent = abstractBean
quest = quest

}

In this example we create an abstract bean of type kni ght o TheroundTabl e @and use the bean
argument to set it to abstract. Later we define a knights bean that has no a ass defined, but
inherits the a ass from the parent bean.

Using Spring Namespaces
Since Spring 2.0, users of Spring have had easier access to key features via XML

namespaces. Y ou can use a Spring namespace in BeanBuilder by declaring it with this
syntax:

xm ns context:"http://ww. springfranmework. org/schema/ cont ext"

and then invoking a method that matches the names of the Spring namespace tag and its

associated attributes:

cont ext.' conponent -scan' (' base-package': "ny.conpany. donain")

Y ou can do some useful things with Spring namespaces, such aslooking up a INDI
resource;

xm ns jee:"http://ww.springfranework. org/schema/jee"

jee.'"jndi-lookup' (id: "dataSource", 'jndi-nane': "java:conp/env/ myDataSource")

This example will create a Spring bean with the identifier dat asour ce by performing a JNDI
lookup on the given INDI name. With Spring namespaces you also get full accessto all of
the powerful AOP support in Spring from BeanBuilder. For example given these two
classes:

class Person {

int age
String nane

voi d birthday() {
++age;
}

}
cl ass BirthdayCardSender {
Li st peopleSentCards = []

voi d onBirthday(Person person) {
peopl eSent Cards << person

}

Y ou can define an aspect that uses a pointcut to detect whenever the virthday() method is
caled:

xm ns aop: "http://ww. spri ngfranework. org/ schema/ aop”

fred(Person) {
name = "Fred"
age = 45

}

bi rt hdayCar dSender Aspect (Bi rt hdayCar dSender)

aop {
config("proxy-target-class": true) {
aspect (i d: "sendBirthdayCard", ref: "birthdayCardSender Aspect") {
after nethod: "onBirthday",
poi ntcut: "execution(void ..Person.birthday()) and this(person)"

18.4 Property Placeholder Configuration

Grails supports the notion of property placeholder configuration through an extended
version of Spring’'s PropertyPlaceholderConfigurer.

Settings defined in either ConfigSlurper scripts or Java properties files can be used as
placeholder values for Spring Configuration in grai |l s-app/ conf/spring/resources. xm and
grail s-app/ conf/ spring/ resour ces. groovy. FOr eéxample given the following entriesin

grail s-app/ conf/application. groovy (or an externalized Config):

dat abase. dri ver="com nysql . j dbc. Dri ver"
dat abase. dbname="nysql : nydb"

Y ou can then specify placeholdersin resources. xmi as follows using the familiar ${..} syntax:

<bean i d="dat aSour ce"

https://docs.spring.io/spring/docs/5.3.30/javadoc-api/org/springframework/beans/factory/config/PropertyPlaceholderConfigurer.html
https://docs.groovy-lang.org/3.0.11/html/gapi/groovy/util/ConfigSlurper.html

cl ass="org. springfranmework. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property nanme="driverd assNanme" >
<val ue>${ dat abase. dri ver} </ val ue>
</ property>
<property nanme="url">
<val ue>j dbc: ${ dat abase. dbnane} </ val ue>
</ property>
</ bean>

To specify placeholdersin resour ces. groovy yOU need to use single quotes:

dat aSour ce(org. springframework. j dbc. dat asour ce. Dri ver Manager Dat aSour ce) {
driverd assName = ' ${dat abase. driver}"
url = 'jdbc: ${dat abase. dbnane}’

}

This sets the property value to aliteral string which islater resolved against the config by
Spring’ s PropertyPlaceholderConfigurer.

A better option for resour ces. gr oovy isto access propertiesthrough the grail sApplication
variable:

dat aSour ce(or g. spri ngframewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce) {
driverC assName = grail sApplication.config.getProperty('database.driver', String)
url = "jdbc\:${grail sApplication.config.getProperty('database.dbnane', String)}"
}

Using this approach will keep the types as defined in your config.

18.5 Property Override Configuration

Grails supports setting of bean properties via configuration.

Y ou define abeans block with the names of beans and their values:

beans {
bookServi ce {
webServi ceURL = "http://ww. amazon. conf
}
}

The general format is:

<<bean nane>>. <<property name>> = <<val ue>>

The same configuration in a Java properties file would be:

beans. bookSer vi ce. webSer vi ceURL=ht t p: / / ww. amazon. com

18.6 Spring Boot Actuators

Spring Boot Actuator endpoints allow you to monitor and interact with your application.
Spring Boot includes a number of built-in endpoints. For example the heal t h endpoint
provides basic application health information.

These endpoints are disabled by default since Grails 3.1.8.
Y ou can enable actuator endpoints in your appi i cation. yni as follows:

grails-app/conf/application.yml

nanagenent :
endpoi nt s:
enabl ed- by-default: true

https://docs.spring.io/spring-boot/docs/2.7.16/reference/html/production-ready-endpoints.html

19 Scaffolding

Scaffolding lets you generate some basic CRUD interfaces for a domain class, including:
® The necessary views
® Controller actions for create/read/update/delete (CRUD) operations

The way for an application to express a dependency on the scaffolding plugin is by
including the following in bui i d. gradi e.

dependenci es {
...
i mpl ementation "org.grails. plugins:scaffol di ng"
...

}
Dynamic Scaffolding

The simplest way to get started with scaffolding is to enable it by setting the scaff ol
property in the controller to a specific domain class:

cl ass BookController {
static scaffold = Book // O any other donain class such as "Author", "Publisher"

}

With this configured, when you start your application the actions and views will be
autogenerated at runtime. The following actions are dynamically implemented by default by
the runtime scaffol ding mechanism:

® index

® show

* edit

® delete

® create

¢ save

® update

A CRUD interface will also be generated. To access this open http: //1 ocal host : 8080/ book 1N &
browser.

Note: The old alternative of defining scar ol d property:

cl ass BookController {
static scaffold = true

}

isno longer supported above Grails 3.0.

If you prefer to keep your domain model in Java and mapped with Hibernate you can still
use scaffolding, simply import the domain class and set its name as the scaf f ol ¢ @rgument.

Y ou can add new actions to a scaffolded controller, for example:

http://localhost:8080/book
https://hibernate.org/

cl ass BookController {
static scaffold = Book
def changeAut hor () {
def b = Book. get(parans.id)
b. aut hor = Aut hor. get (parans["author.id"])
b. save()

/1 redirect to a scaffolded action
redi rect (action: show)

}

Y ou can also override the scaffolded actions:

cl ass BookController {
static scaffold = Book
/'l overrides scaffolded action to return both authors and books
def index() {
[bookl nst anceLi st: Book.list(),
bookl nst anceTot al : Book. count (),
aut hor I nstanceLi st: Author.list()]

}

def show() {
def book = Book. get (parans.id)
log.error("{}", book)
[bookl nst ance : book]

}

All of thisiswhat is known as "dynamic scaffolding” where the CRUD interfaceis
generated dynamically at runtime.

By default, the size of text areasin scaffolded views is defined in the CSS, so adding ‘'rows
and 'cols attributes will have no effect.

Also, the standard scaffold views expect model variables of the form
<pr oper t yName>| nst anceLi st for collections and <pr oper t yName>| nst ance for Single instances. It's
tempting to use properties like 'books' and 'book’, but those won’t work.

Static Scaffolding

Grails lets you generate a controller and the views used to create the above interface from
the command line. To generate a controller type:

grails generate-controller Book

or to generate the views:

grails generate-view Book

or to generate everything:

grails generate-all Book

If you have adomain classin a package or are generating from a Hibernate mapped class
remember to include the fully qualified package name:

grails generate-all com bookst ore. Book

Customizing the Generated Views

The views adapt to Validation constraints. For example you can change the order that fields
appear in the views simply by re-ordering the constraints in the builder:

def constraints = {

https://hibernate.org

title()
rel easeDat e()

}

Y ou can also get the generator to generate listsinstead of text inputs if you use the i nti st
constraint:

def constraints = {
title()
category(inList: ["Fiction", "Non-fiction", "Biography"])
rel easeDat e()

}

Or if you use the range constraint on a number:

def constraints = {
age(range: 18. . 65)
}

Restricting the size with a constraint also effects how many characters can be entered in the
d view:

def constraints = {
nane(si ze: 0.. 30)
}

The Fields Plugin

The Grails scaffolding templates make use of the The Fields Plugin. Once you’ ve generated
the scaffold views, you can customize the forms and tables using the Tagi i b provided by the
plugin (see the Fields plugin docs for details).

<% - Cenerate an HTM. tabl e from bookl nstanceList, showing only "title'" and 'category' colums --%
<f:table collecti on="bookl nstanceList" properties="["title', 'category']"/>

Customizing the Scaffolding templates

The templates used by Grails to generate the controller and views can be customized by
installing the templates with the install-templates command.

20 Deployment

Grails applications can be deployed in a number of ways, each of which hasits pros and
cons.

20.1 Standalone

" ./gradlew bootRun"

Y ou should be very familiar with this approach by now, since it is the most common method
of running an application during the development phase. An embedded Tomcat server is
launched that loads the web application from the development sources, thus allowing it to
pick up any changes to application files.

Y ou can run the application in the production environment using:

./ gradl ew boot Run -Dgrails.env=prod

Y ou can run the app using the voot rRun Gradle task. The next command uses the Gradle
Wrapper.

https://grails.org/plugins.html#plugin/fields
http://grails3-plugins.github.io/fields/snapshot/
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html

./ gradl ew boot Run
Y ou can specify an environment supplying grai i s. env System property.

./ gradl ew -Dgrails.env=prod boot Run

Runnable WAR or JAR file

Another way to deploy in Grails 3.0 or above is to use the new support for runnable JAR or
WAR files. To create runnable archives, run grai s package:

grails package
Alternatively, you could use the asseml e Gradle task.
./ gradl ew assenbl e

Y ou can then run either the WAR file or the JAR using your Javainstallation:

java -Dgrails.env=prod -jar build/libs/nywar-0.1.war (or .jar)

A TAR/ZIP distribution

Note: TAR/ZIP distribution assembly has been removed from Grails 3.1.

20.2 Container Deployment (e.g. Tomcat)

Grails apps can be deployed to a Servlet Container or Application Server.

WAR file

A common approach to Grails application deployment in production isto deploy to an
existing Servlet container viaa WAR file. Containers allow multiple applications to be
deployed on the same port with different paths.

Creating aWAR file is as simple as executing the war command:

grails war
Thiswill produce aWAR file that can be deployed to a container, in the bui i da/1ibs directory.

Note that by default Grails will include an embeddable version of Tomcat inside the WAR
file so that it is runnable (see the previous section), this can cause problemsif you deploy to
adifferent version of Tomcat. If you don’t intend to use the embedded container then you
should either remove the Tomcat dependencies or change the scope to test 1 npl enent at i on
prior to deploying to your production container in bui i d. gr adi e:

testlnpl ementation "org. springframework. boot: spring-boot-starter-tontat”

Application servers

The Grails framework requires that runtime containers support Servlet 3.0 and above. By
default, Grails framework applications are bundled with an embeddable Tomcat and testing
is primarily done with Tomcat. Any servlet container meeting the minimum requirements
should be able to run Grails framework applications, but some workarounds may be required
for container-specific bugs or configurations.

20.3 Deployment Configuration Tasks

Settingup HTTPS and SSL certificatesfor standalone deployment

To configure an SSL certificate and to listen on an HTTPS port instead of HTTP, add
properties like these to appli cation. yni :

server:

port: 8443 # The port to listen on

ssl:
enabl ed: true # Activate HTTPS node on the server port
key-store: <the-location-of-your-keystore> # e.g. /etc/toncat7/ keystore/tontat. keystore
key- st or e- passwor d: <your - key- st or e- passwor d> # e.g. changeit
key-al ias: <your-key-alias> # e.g. toncat

key- password: <usual |l y-the-same- as-your-key- st or e- passwor d>

These settings control the embedded Tomcat container for a production deployment.
Alternatively, the properties can be specified on the command-line. Example:

- Dserver. ssl . enabl ed=true -Dserver. ssl.key-store=/path/to/keystore.

Configuration of both an HTTP and HTTPS connector via application propertiesis not
supported. If you want to have both, then you' [| need to configure one of them
programmatically. (More information on how to do this can be found in the how-to guide
below.)

There are other relevant settings. Further reference:

® Spring Boot: Embed Webservers - Configure SSL

® Spring Book: Enable Multiple Connectors with Tomcat

®* Spring Boot: Common Application Properties

21 Contributing to Grails

Grailsis an open source project with an active community and we rely heavily on that
community to help make Grails better. As such, there are various ways in which people can
contribute to Grails. One of these is by writing useful plugins and making them publicly
available. In this chapter, we'll look at some of the other options.

21.1 Report Issuesin Github'sissuetracker

Grails uses Github to track issuesin the core framework. Similarly for its documentation
thereis a separate tracker. If you' ve found a bug or wish to see a particular feature added,
these are the places to start. You'll need to create a (free) github account in order to either
submit an issue or comment on an existing one in either of these.

When submitting issues, please provide as much information as possible and in the case of
bugs, make sure you explain which versions of Groovy, Grails and various plugins you are
using. Other environment details - OS version, JDK, Gradle etc. should also be included.
Also, an issue is much more likely to be dealt with if you upload a reproducible sample
application on a github repository and provide alink in the issue.

Reviewing issues

There are quite afew old issues in github, some of which may no longer be valid. The core
team can’'t track down these alone, so a very simple contribution that you can make isto

https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto-configure-ssl
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto-enable-multiple-connectors-in-tomcat
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://github.com/grails/grails-core/issues
https://github.com/grails/grails-doc/issues

verify one or two issues occasionally.

Which issues need verification? Going to the issue tracker will display all issues that haven't
been resolved.

Once you' ve verified an issue, smply add a short comment explaining what you found. Be
sure to metion your environment details and grails version.

21.2 Build From Sour ce and Run Tests

If you'reinterested in contributing fixes and features to any part of grails, you will haveto
learn how to get hold of the project’s source, build it and test it with your own applications.
Before you start, make sure you have:

* A JDK (11 or above)
* Agitclient

Once you have all the pre-requisite packages installed, the next step is to download the
Grails source code, which is hosted at GitHub in several repositories owned by the "grails’
GitHub user. Thisisasimple case of cloning the repository you're interested in. For
example, to get the core framework run:

git clone http://github.conm grails/grails-core.git

Thiswill create a"grails-core" directory in your current working directory containing all the
project source files. The next step isto get a Grails installation from the source.

Creating a Grailsinstallation

If you look at the project structure, you'll see that it doesn’t look much like a standard
cral Ls_Hove installation. But, it’s very ssimpleto turn it into one. Just run this from the root
directory of the project:

./gradlew install

Thiswill fetch al the standard dependencies required by Grails and then build a erai Ls_Hove
installation. Note that this target skips the extensive collection of Grailstest classes, which
can take some time to compl ete.

Once the above command has finished, simply set the arai Ls_Hove environment variable to
the checkout directory and add the "bin" directory to your path. When you next type grai i s
command to run, you'll be using the version you just built.

If you are using SDKMAN then that can also be used to work with thislocal installation via
the following:

sdk install grails dev /path/to/grails-core

Y ou will also need to publish your local installation to your local maven.

./ gradl ew pTM.

Now you will have adev version in your local which you can use to test your features.

Running the test suite

https://github.com/grails/grails-core/issues?q=is%3Aopen+is%3Aissue
http://github.com
http://github.com/grails
http://github.com/grails
http://sdkman.io

All you have to do to run the full suite of testsis:

./ gradl ew test

These will take awhile (15-30 mins), so consider running individual tests using the
command line. For example, to run the test SpPec si narypi ugi nspec SIMply execute the
following command:

./gradlew :grails-core:test --tests *.BinaryPl ugi nSpec

Note that you need to specify the sub-project that the test case resides in, because the
top-level "test" target won't work....

Developing in IntelliJ IDEA

Y ou need to run the following gradle task:

.Igradi ew i dea
Then open the project file which is generated in IDEA. Simple!
Developing in STS/ Eclipse

Y ou need to run the following gradle task:

.Igradi ew cl eankcl i pse ecl i pse

Before importing projects to STS do the following action:

® Edit grails-scripts/.classpath and remove the line "<classpathentry kind="src"
path="../scripts"'/>".

Use "ImportGenera Existing Projects into Workspace" to import all projectsto STS. There
will be afew build errors. To fix them do the following:

® Add the springloaded-core JAR filein
$GRAILS HOME/lib/org.springsource.springloaded/springl oaded-core/jars to grails-core’ s
classpath.

® Remove "src/test/groovy” from grails-plugin-testing’ s source path GRECL IPSE-1067

® Addthejsp-api JAR filein 3GRAILS HOME/libl/javax.servlet.jsp/jsp-api/jars to the
classpath of grails-web

® Fix the source path of grails-scripts. Add linked source folder linking to "../scripts”. If you
get build errorsin grails-scripts, do "../gradlew cleanEclipse eclipse” in that directory and
edit the .classpath file again (remove the line "<classpathentry kind="src"
path="../scripts'/>"). Remove possible empty "scripts" directory under grails-scriptsif you
are not able to add the linked folder.

® Do aclean build for the whole workspace.

® TouseEclipse GIT scm team provider: Select all projects (except "Servers') in the
navigation and right click Team Share project (not "Share projects"). Choose "Git". Then
check "Use or create repository in parent folder of project” and click "Finish".

® Get the recommended code style settings from the mailing list thread (final style not decided
yet, currently profilexml). Import the code style xml fileto STSin

http://grails.1312388.n4.nabble.com/Grails-development-code-style-IDE-formatting-settings-tp3854216p3854216.html
http://grails.1312388.n4.nabble.com/attachment/3854262/0/profile.xml

WindowPreferencesJavaCode StyleFormatterlmport . Grails code uses spaces instead of tabs

for indenting.

Debugging Grailsor a Grails application

To enable debugging, run:

./ gradl ew boot Run --debug-jvm

By default GrailsforksaJVM to run the application in. The - debug- j vmargument causes the
debugger to be associated with the forked JVM.

21.3 Submit Patchesto GrailsCore

If you want to submit patches to the project, you ssmply need to fork the repository on
GitHub rather than clone it directly. Then you will commit your changes to your fork and
send a pull request for a core team member to review.

Forking and Pull Requests

One of the benefits of GitHub isthe way that you can easily contribute to a project by
forking the repository and sending pull requests with your changes.

What follows are some guidelines to help ensure that your pull requests are speedily dealt
with and provide the information we need. They will also make your life easier!

Make sureyour fork isup to date

Making changes to outdated sources is not a good idea. Someone else may have already
made the change.

git pull upstream naster
Create alocal branch for your changes

Your lifewill be greatly simplified if you create alocal branch to make your changes on.
For example, as soon as you fork arepository and clone the fork locally, execute

git checkout -b issue_123

Thiswill create anew local branch called "issue 123" based off the "master" branch. Of
course, you can name the branch whatever you like, but a good idea would be to reference
the GitHub issue number that the change is relevant to. Each Pull Request should have its
own branch.

Create Github issuesfor non-trivial changes

For any non-trivial changes, raise an issue on github if one doesn’t already exist. That helps
us keep track of what changes go into each new version of Grails.

Include github issue I D in commit messages

This may not seem particularly important, but having a github issue ID in a commit message
means that we can find out at alater date why a change was made. Include the ID in any and
all commitsthat relate to that issue. If acommit isn’t related to an issue, then there's no need
to include anissue ID.

http://github.com
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/creating-a-pull-request/

Make sureyour fork isup to date again and rebase

Since the core developers must merge your commits into the main repository, it makeslife
much easier if your fork on GitHub is up to date before you send a pull request.

Let’s say you have the main repository set up as aremote called "upstream” and you want to
submit a pull request. Also, all your changes are currently on the local "issue 123" branch
but not on "master”. The first step involves pulling any changes from the main repository
that have been added since you last fetched and merged:

git checkout master
git pull upstream naster

This should compl ete without any problems or conflicts. Next, rebase your local branch
against the now up-to-date master:

git checkout issue_123
git rebase master

What this does is rearrange the commits such that all of your changes come after the most
recent one in master. Think adding some cards to the top of a deck rather than shuffling
them into the pack.

Push your branch to GitHub and send Pull Request

Finally, you must push your changes to your fork on GitHub, otherwise the core developers
won't be able to pick them up:

git push origin issue_123

Y ou should not merge your branch to your forks master. If the Pull Request is not
accepted, your master will then be out of sync with upstream forever.

Y ou're now ready to send the pull request from the GitHub user interface.

Say what your pull request isfor

A pull request can contain any number of commits and it may be related to any number of
issues. In the pull request message, please specify the IDs of all issues that the request

relates to. Also give abrief description of the work you have done, such as: "l refactored the
data binder and added support for custom number editors. Fixes #xxxx".

21.4 Submit Patchesto Grails Documentation

Contributing Simple Changes

The user guide is written using Asciidoctor. The simplest way to contribute fixesisto
simply click on the "Improve this doc" link that is to the right of each section of the
documentation.

Thiswill link to the Github edit screen where you can make changes, preview them and
create a pull request.

Building the Guide

If you want to make significant changes, such as changing the structure of the table of
contents etc. then we recommend you build the user guide. To do that simply checkout the
sources from github:

http://asciidoctor.org/docs/user-manual/

$ git clone https://github.con grails/grails-doc/
$ cd grails-doc

The source files can be found in the src/ en/ gui de directory. Whilst the Table of Contents
(TOC) isdefined in the src/ en/ gui de/ toc. ynt file.

Each YAML key pointsto a Asciidoc template. For example consider the following YAML.:

introduction:
title: Introduction
what sNew.
title: What's newin Gails 3.2?

Thei ntroducti on key pOI NtS tO src/ en/ gui de/ i ntroduct i on. adoc. Thetitle key definesthetitle
that isdislayed in the TOC. Because what snew Key 1S nested underneath the i nt roducti on key it
pOi NtS 1O src/ en/ gui de/ i ntroduct i on/ what sNew. adoc, which isnested in adi rectory cdled

introduction.

Essentially, using thetoc. yni file and the directory structure you can manipulate the structure
of the user guide.

To generate the documentation run the publ i shaui de task:

$./gradl ew publishGuide -x api Docs
In the above example we skip the api ocs task to speed up building of the guide, otherwise
all Groovydoc documentation will be built too!

Once the guide is built ssmply open the bui 1 d/ docs/i ndex. htmi file in a browser to review your
changes.

Copies of this document may be made for your own use and for distribution to others, provided that you
do not charge any fee for such copies and further provided that each copy contains this Copyright Notice,
whether distributed in print or electronically.

